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Abstract

The Syracuse (Collatz) conjecture is a simple yet notoriously difficult open problem in mathematics.
Given a positive integer vo, the associated sequence evolves by the rule: if v, is even, then vp4+1 = v, /2
(type O transition); otherwise, vn+1 = (3un + 1)/2 (type 1 transition). The conjecture asserts that every
such sequence eventually reaches the value 1.

If we consider the set of 2/™) random transition lists of length N, each encoding a sequence of type 0
and type 1 transitions in the Syracuse process, then the number of initial values vo < 2" that appear as
minimal values generating one of these lists follows the binomial distribution B(2f<N>, 2N =y,

This allows us to bound, using the Central Limit Theorem or the Berry—Esseen inequality, the number
of initial values below 2" that appear as minimal initial values associated with transition lists in the sample.

We introduce the concept of the set Up(IV, vo), consisting of transition lists for which vg is minimal among
the first N elements. By studying this set and using the fact that growth remains naturally bounded beyond
the first p > 100 terms, we show that the cardinality of admissible transition lists is provably insufficient to
contradict the conjecture.

Our method is purely discrete and combinatorial, deliberately avoiding classical analytic or ergodic
techniques.

1 Introduction

The Syracuse conjecture—also known as the Collatz conjecture or the 3z + 1 problem—is one of the most
well-known unsolved problems in mathematics. Its formulation is deceptively simple: starting from any
positive integer vo, one defines a sequence by the recursive rule
B v /2, if vy, is even (type 0 transition);
Ut (Bvn +1)/2, if v, is odd (type 1 transition).
The conjecture states that every such sequence eventually reaches the value 1. Despite its apparent simplicity
and extensive computational verification, a general proof has remained elusive.

In this paper, we introduce a rigorous combinatorial model of the Syracuse conjecture, grounded in basic
statistical principles. The approach is based on analyzing how initial values vo are distributed within large
sets of transition lists.

Section [2] introduces the classical Syracuse sequence, its reduced form, and an approximate variant v, in
which the constant +1 is omitted in the odd case. We also define the transition list L(IN, m,d)—encoding
the parity transitions occurring in the Syracuse sequence— and establish a partial order over such lists.

In Section |3} we prove that the number of initial values vg < 2" that appear as minimal values generating
one of the 2/™) random transition lists of length N—each encoding a sequence of type 0 and type 1
transitions in the Syracuse process—follows the binomial distribution B(?f(N), oN=m)y,

In Section [d] we present the central result—the Random List Theorem—which allows us to bound the
number of initial values below 2" that occur as minimal values generating a given transition list in the
sample. Two classical methods are employed to estimate the number of minimal initial values: on the one
hand, the Central Limit Theorem, which is effective with moderate sample sizes; on the other hand, the
Berry—Esseen inequality, which requires significantly larger sets but has the important advantage of enabling
a fully formalized proof within a proof assistant.

Section |5 develops a detailed analysis of the approximate sequence v,,, quantifying the error term r,, =
vn, — v), and showing that the influence of the omitted constant becomes negligible for large vo and moderate
N.

The following four sections form the core of the proof:
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e Section |§| studies the boundary list Ceil(N), which provides a minimal condition ensuring that the
approximate sequence v}, is strictly increasing.

e Section [7| focuses on the minimal list JGL(N,wvo) in the partial order, guaranteeing growth for the
actual sequence v,. Under suitable conditions, this list coincides with Ceil(NV).

e Section [§] introduces the filtered list JGLa2, (N, vo), which ensures that the first p > 100 values of the
sequence satisfy v, > vo/2%?, a key constraint for bounding type 1 transitions.

e Finally, Section [J] synthesizes these tools to complete the proof. By counting the number of lists above
JGL2, and applying the Random List Theorem, we derive a contradiction, thereby completing the
proof of the conjecture.

In summary, this work offers not only a complete combinatorial proof of the Syracuse conjecture, but
also a general methodological framework for approaching related deterministic problems via discrete and
statistical techniques.

Beyond the specific case of the 3n 4+ 1 rule, our method extends naturally to variants such as 3n + b,
divergent rules like 5n + 1, and other recent conjectures (see arXiv:2107.11160 [5]). These extensions are
explored in additional documents (see [1],[2]).

The method developed here is deliberately elementary: it avoids ergodic theory, analytic tools, and
arithmetic geometry. Instead, it demonstrates how a purely combinatorial and discrete perspective can lead
to a complete and rigorous proof. While it does not aim to rival deep analytic results—such as those of
Terence Tao [9]—it highlights the power of structural reasoning in tackling complex dynamical problems.
This approach complements analytical techniques and opens new directions for combinatorial insight into
the Syracuse problem.

An interactive platform allowing exploration of the numerical properties discussed in this paper is avail-
able online (see [3]), although it plays no role in the proofs themselves.

2 Definitions

This section introduces the key definitions that will be used throughout the paper. It provides a reference
framework for the construction and proof of the main result.

2.1 Standard Syracuse Sequence: (u,)
The standard Syracuse sequence (ur) is defined for any initial value ug > 0 by the recurrence:

%L, if u, is even (type 0 transition),
3un + 1, if u, is odd (type 1 transition).

Un+1 =

Remarque 2.1. The type of each transition depends on the parity of wu,, which is given by its least
significant bit (bit 0).

2.2 Reduced Syracuse Sequence: (v,)

Since any odd value wu,, is followed by an even u,+1, it is natural to compose two consecutive steps into one.
This leads to the definition of a reduced sequence (vy), which simplifies the analysis:
Un . .
= if v, is even (type 0),
Vnt1 = 9§ 3q. 4+ 1 with vg > 0.
%, if v, is odd (type 1),

Remarque 2.2. The parity of v, still determines the type of transition. While the sequence could be
written as v, = T(™ (vg), we retain the recurrence form for clarity.

2.3 Transition List £(N,m,d)

A transition list of length N is a sequence of N transition types t; € {0, 1}, representing type 0 and type 1
transitions, respectively. It is denoted:

£(N,m, d) = (to,tl, PN ,thl),
where m is the number of type 1 transitions, and d = N — m is the number of type 0 transitions.

e m: total number of type 1 transitions (multiplications);
e d: number of type 0 transitions (divisions by 2);

e N =m + d: total length of the transition list.



For each prefix of the list of length n < N, we define:
® m, = Z;:Olﬂé{ti:l% the number of type 1 transitions among the first n elements;
® d, =n — my, the number of type 0 transitions among the first n elements.

Exemple 2.3. For vp = 7, the sequence is:

751151752 % 13
Then: £(4,3,1) = (1,1,1,0).

Remarque 2.4. The list £(N,m,d) is also called a parity vector, since each t; corresponds to the least
significant bit of v;.

2.4 Partial Order on Transition Lists

We define a partial order < on transition lists of length N by comparing the cumulative number of type 1
transitions at each prefix of the list.
Let £1 and L2 be two transition lists of length N. We write:

L1 <Ly ifandonlyif foral0<n <N, mnrs, <Mnry,

where m,,, ¢ denotes the number of type 1 transitions among the first n elements of list L.
This relation is a partial order: it satisfies reflexivity, antisymmetry, and transitivity.
We also define the associated strict order:

L1 <Ly ifandonlyif forall0<n<N, mnr, <Mnrc,-

Remarque 2.5. This is not a total order. There may exist two lists £1 and L2 such that neither £1 < Lo
nor L2 < L1 holds. In such cases, the lists are said to be incomparable under this relation. This situation
arises when the distribution of type 1 transitions differs in position but not in number.

Exemple 2.6. Let £; = (1,0,1) and £2 = (0,1,1). The cumulative sums of type 1 transitions yield:
(m1,m2,m3) =(1,1,2) for L1, and (0,1,2) for Lo.

Thus, neither £1 < L2 nor L2 < £1 holds: the lists are incomparable.

Remarque 2.7 (Interpretation). This order reflects the temporal positioning of type 1 transitions: a list
that accumulates multiplications more slowly (i.e., later in the sequence) is considered "smaller” in this
ordering.

2.5 Solutions of a Transition List

We say that the initial or starting value vg
e follows the transition list Ly,
e realizes the transition list Ly,
e or is a solution of the transition list Ly,

if and only if the first N transitions of the reduced Syracuse sequence starting from vy are exactly those
specified by Ln.

We say that v is the minimal solution of Ly if vo < 2N The existence of such a solution will be
established in Section [3.4]

2.6 Approximate Reduced Syracuse Sequence: (v),)

n
We now introduce an approximate version of the reduced Syracuse sequence by neglecting the constant term

in the type 1 transition. Specifically, in place of the expression 3v,, + 1, we consider only 3v,,. The resulting
sequence (v},) is defined by the recurrence:

/
v—”, if vy, is even (type 0),
'U;L_H = 321}, with v = vo.
7", if v, is odd (type 1),

Remarque 2.8. This approximation is especially meaningful when the initial value vo is large and the
number of steps n remains moderate. Crucially, the transition types of the approximate sequence v’ coincide
exactly with those of the original sequence v, since the parity (and thus the transition vector (¢;)) is preserved.

However, the values of v), may be non-integer, which introduces a discrepancy compared to the actual
sequence. To quantify this difference, we define a correction term 7, such that:

’
Un = Up + Tn.

This decomposition will be used later to precisely analyze the divergence between the exact and approximate
sequences.



3 Binomial Distribution of Initial Values Below a Threshold

Théoréme 3.1 (Binomial Distribution of Minimal Initial Solutions). Let nb € N, and consider a set of
nb independent and distinct transition lists L1,...,Lnp, each of length N. Assume each list L(N,m,d) is
random, with a proportion pr = m/N of type 1 transitions. Let k = N —n and Ry denote the number of
minimal initial solutions vo < 2™ = 2N =F associated with these nb lists.

Then, for any 0 < k < N — 10, the random variable Ry follows the binomial distribution:

Ry, ~ Bin(nb, 1/2%).

The proof of the theorem is broken down into several intermediate results, presented as lemmas in the
following subsections.

3.1 Lemma: the Probability that v; is even is % for vy > 4

Lemme 3.2. Let v > 4 be an integer chosen uniformly in the interval [27,2"") with n > 2. Then the
parity of v1, defined by the reduced Syracuse iteration

o vo/2 ifvo=0 mod 2,
" )G 1)/2 ifvo=1 mod 2,

the parity of v1 is uniformly distributed :
1
P(v1 =0 mod2)=Pvi=1 mod?2)= 3

Proof. Let us write the binary decomposition of vg:
N
vo = Zap 2P with a, € {0,1}.
p=0

Case 1: vy is even (ap = 0)
Then

N N—-1
Vo p—1 V4
S ST SE
p=1 p=0

The parity of vy is given by ai. Since N > 4, the bit a1 exists and is uniformly distributed in {0, 1}:

1
P(v1 even | vg even) =P(a1 =0) = 3
Case 2: vg is odd (ag = 1)
We have:

_3vo+1 14w+ 2v0
2 2 ’

U1

Replacing vo by its binary expansion:

1+Z;V:O ap~2p+25:0 ap-2rtt .
V1 = = ap-2.

2

The least significant bit aj depends on:
ap=(1+ap+a) mod2=(1+1+4+a1) mod2=aj.

As in the even case, the parity of v is determined by a1, which is uniformly random. Hence:

P(vy even |wvg odd) =P(a; =0) = %

O

Remarque 3.3. This lemma shows that the parity of vy is exactly balanced as soon as vy > 4, i.e., when

the binary representation of vy has at least two digits. This is an exact property, not an asymptotic estimate.
Some sources incorrectly state that this equiprobability only holds “in sufficiently large intervals.” For

instance, the May 2025 version of the French Wikipedia article on the Syracuse conjecture claims:

“the parity of the result is independent of that of v, if v is randomly chosen in a sufficiently large
interval.”

However, as the above proof shows, the property already holds perfectly for all vo > 4, without any asymp-
totic assumption.

It is also important to note that this equiprobability cannot be extended to subsequent values vy, since
the trajectory is deterministically correlated with vo. Assuming independence along the entire sequence is a
common error in probabilistic models of the Syracuse dynamics. While the lemma justifies local randomness
at the first step, caution is required when extending this reasoning to full orbits.



3.2 Lemma: Bijection between Transition Lists of Length N and Minimal
Initial Values vy < 2" That Realize Them

Lemme 3.4. For every integer N > 1, there is a bijection between:
e the set Ln of binary transition lists (to,...,txy—1) € {0,1}";

o and the set of initial values vo < 2V so that the sequence (v1,...,vN) generated by the reduced Syracuse
iteration follows the transition pattern (to,...,tN—1).

Each transition list uniquely determines a minimal initial value vo < 2N that realizes it. Furthermore, all
other values generating the same transition list are of the form:

v(()") =vw+n-2Y, neN.
Remarque 3.5. This relies on extending the definition to include vo = 0, which is then considered as the
minimal solution for all transition lists containing exactly N transitions of type 0 (and no transitions of
type 1), instead of assigning vo = N,

Proof. The reduced Syracuse dynamics assigns to any integer v a transition list (to,...,tn—1) defined by:

t; =

0 if v; is even,
1 if v; is odd,

where v;11 = T'(v;) with T the reduced Syracuse function.
We prove by induction on N that for each binary word of length N, there exists a unique minimal
vo < 2V realizing it.

Base case N =1 There are two possible transition lists:
e to =0 (even), realized by vo = 0 (with the extension);
e to =1 (odd), realized by vo = 1.

Each transition bit is thus realized by a unique vy < 2.

Inductive step Assume the result holds for lists of length N: for every Ln = (to,...,tn—1), there exists
a unique minimal value so < 2V realizing it.

Let Ln+1 = (to,...,tn) be a list of length N + 1.

By the inductive hypothesis, the prefix (to,...,tn—1) corresponds to a unique value so < 2N Consider
the two candidate initial values:

véo) = So, ’Uél) =so+2".

Both share the same lower N bits and thus follow the same first N transitions. Let m be the number of
type 1 transitions among (to,...,tn—1). Then, by recurrenceﬂ their corresponding values at time N differ
by 3™:

vg\'f):sNJrav?;m.

We now determine which of the two values vo'l) satisfies tn, by testing the parity of vj(\?):
e If sy =tn (mod 2), choose a = 0;
e Otherwise, choose a = 1.

(0) (1)
0

Thus, exactly one of the two values vy’ or v,’ matches the full transition list Ln41, and its value is

strictly less than 2V F1,

ILet us detail the first transition:
The value an has the same parity as sg, corresponding to ¢y € {0,1}.

e If to = 0, then sg is even (since sq follows L), and

(a) N
-2
Ug‘”:%:%:%4_&.21\7*1:514_%21\’*1_
e If to = 1, then sg is odd (since sq follows L), and
@ _ 3" +1  3(sota-2¥)+1 Bso+1 3.2V
vy = = =

= .3.2N-1,
2 2 2 2 s1ta

(

The value vla) has the same parity as s1, which corresponds to ¢7.
One can easily prove by induction that, for all 0 < n < N,
v,(f> =sp+a-3m 2N

where m,, denotes the number of type 1 transitions among the first n transitions of L.

and forn = N :

U§$>=SN+CL'3M.



Infinitely many solutions Since adding 2V does not affect the first N transitions, any integer of the
form:

vém =v+n-2Y, neN,
also realizes the same transition list. Therefore, for each £y, there exists an infinite arithmetic progression
of initial values with a unique minimal representative in [0,2Y).

O

Remarque 3.6 (On the precedence of the lemma). In the standard case, this lemma corresponds to results
previously established by Riho Terras (1976) [10] and C. J. Everett (1977) [6], as kindly pointed out to me
by Shalom Eliahou in a personal correspondence dated December 18, 2024.

These references were not identified in earlier versions of this document (prior to version 3.1.2), as the
original articles are written in English and adopt a different formalism.

That said, the main contribution of this section lies in the corollary that follows, which, to the best of
our knowledge, constitutes a new result within the specific framework developed here.

3.3 Corollary of Lemma [3.4; P(v, < 2¥7') = i for Transition Lists of
Length N

Corollaire 3.7. Let N > 1. Among all transition lists of length N, the probability that the minimal initial

value vy satisfies vo < oN—1 g exactly
1

P(vo < 2V 1) = =,
2
Proof. We consider only the minimal initial values vo < 2~ arising from the bijection of Lemma

Given a list of length N, the construction extends a prefix of length N — 1 by one final bit ¢txy—1. The
two candidates for vg are:

v(()o) = s0, 1}(()1) = 50 4oL,

Only one of these two values satisfies the final transition, depending on the parity of sy_1 and the bit

tn—1. The minimal representative vo = s¢ is selected if and only if:

(tv—1 =0 and sy—1 is even) or (tny—1 =1 and sy—1 is odd).

Assuming, as shown in Lemma that P(sy—1 even) =
tn—1 = 1, we compute:

%7 and letting p denote the probability that

1 1 1
P(UOZSO):(l—p)§+p'§:§

Hence, among all transition lists of length /N, the minimal initial value vo falls below
exactly

27 =1 with probability

P(vy < 2V1) = %

O

3.4 Corollary of Lemma P(vy < 2V7%) = & for Transition Lists of
Length N

Corollaire 3.8. Let N > 1 and 0 < k < N. Among all transition lists of length N, the probability that the

associated minimal initial value satisfies vo < 2V ~F is exactly
N—k 1
P(UO <2 ) = 27]“

Proof. By iterating the reasoning of Corollary k times, we observe that each additional transition bit
splits the space of minimal initial values in half. Starting from the full interval [0, 2N, the probability that
a randomly constructed list yields a minimal vy below 2~ ~% is thus

_ 1
]P(’U() < 2N k) = 27]6

This also yields the following consequences:

e The probability that v falls in the interval [2N*k, 2NV =F+1) is likewise 2%;

e By complement, the probability that vo > 2V "% is 1 — .

Finally, to have a nonzero expected number of minimal values vo < 2V 7% in a sample of ng = 2f(N)
transition lists, we require:

9f(N)

e > 1 ifand only if k< f(NV).
This inequality gives a critical threshold beyond which the probability of sampling such a value becomes
negligible. O



Remarque 3.9. This exact power distribution is crucial in establishing bounds that scale logarithmically
with N in the Random List Theorem. It reflects the uniform binary structure induced by the bijection of
Lemma [3.4]

3.5 Iterated Binomial Reduction

Lemme 3.10 (Iterated Binomial Reduction). Letnb € N, and define a sequence of random variables (Ry)k>0
recursively by:
Ro =nb, and Ry~ Bin(Rk-1,1/2) forallk > 1.

Then, for every k € N, the random variable Ry, follows the binomial distribution:
. 1
Ry ~ Bin | nb, ok |

Base case: for k = 0, we have Rg = nb, which is equivalent to Ry ~ Bin(nb, 1), i.e., Ro ~ Bin(nb,1/2°).

Proof. We proceed by induction on k.

Inductive step: suppose that for some k > 0, we have

1
Ry ~ Bin (nb, 27) .

Then, conditionally on Ry = r, the next variable satisfies
Ry41 | R =7 ~ Bin(r,1/2).

Thus, we can write:

Ry,

Ri41 = Z Y,

i=1

where the Y; are independent Bernoulli(1/2) variables, independent of Ry.
Since Ry, ~ Bin(nb, 1/2%), we can express:

nb

Ry = ZX“ where X; ~ Bernoulli(1/2"),

=1

and the X, are independent.

Each X; = 1 indicates that the i-th item survived the first k filtering steps. For Rjy1, we apply one
more independent Bernoulli(1/2) filtering to each X; = 1.

Therefore, each i € {1,...,nb} survives the first k£ + 1 steps with probability:

1 1 1
P(survival) = o3 = Rt

By independence, we conclude that:

. 1
Rk+1 ~ Bin (nb, W) .

Conclusion: the result follows by induction: for all k£ € N,

1
Ry ~ Bin (nb, 27) .

3.6 Proof ot the Theorem

Proof. Each transition list £ defines a unique minimal solution vy < 2% under the convention that vg = 0
corresponds to the all-zero transition list (see Lemma.

For each transition ¢tny_x—1 in each list, we consider vy to be the minimal initial value that solves the
first N — k — 1 transitions.

We know that vo < 2V k1,

Moreover, vy is also the minimal solution for the first N —k transitions of £ if and only if ¢t y_;_1 matches
the "natural” transition from vg, that is, if

((tn—k—1 =1)and vy—_g—1isodd) or ((tn—r—1 =0)and vn—_r—_1 is even).



The probability of this event is
1 1 1
p£'§+(1—p£)'§:§-

Indeed, if the transition does not match, then the minimal solution for the first N — k transitions of £
would be vg 4+ 28 7% > 2V=F "and thus no longer strictly below the threshold.

‘We now prove by induction that Rx ~ Bin (nb, 2%)

Base case: For k£ = 1, we consider the final transition tx_1 of each transition list. Given that the
minimal initial value vo for the first N — 1 transitions satisfies vy < 2V 71, the value vg also solves the full
list of N transitions if and only if ¢xy_1 matches the natural parity transition induced by vy_1. This occurs
with probability 1/2, since the transition is chosen at random and independently of v, and the parity of
vn—1 is balanced in expectation.

Since the nb transition lists are all distinct and independent, we perform nb independent Bernoulli trials
with success probability 1/2, one for each list. It follows that

R ~ Bin(nb, 1/2).

Inductive step: Assume that Ry_; ~ Bin(nb,1/2571).
By iterating the same reasoning at step k, after analyzing the last k£ — 1 transitions of each list, each
remaining minimal value survives the next transition with probability 1/2, independently. Therefore,

1
Ry, ~ Bin <R,H, 5) .

Then, by applying Lemma [3.10] we deduce that

1
Ry ~ Bin (nb, Q—k) .
This completes the proof by induction.
Therefore, we conclude that the number of minimal initial solutions strictly less than 2V " follows the
binomial distribution Bin(nb, 1/2%).
O

4 Random List Theorem

[F(NM)1 With number of lists nb = 2[/(N)]

| e—e Statistic distribution
e—e Upper bound of remaining solutions

W TFON) |

e—e Lower bound of remaining solutions

log, (solutions)
T

log, (o)

Figure 1: Number of solutions vy < 2"

Remarque 4.1 (Idea). The probability that the minimal initial value vy of a transition list L(N,m,d)
satisfies vg < 2" is 2V ™.
If 2/Y) random lists are tested, then we expect

E [#{vo < 2"} = 2f V) . on=N = 9°,

Hence, the shift index e provides a direct estimate of the expected number of solutions.

Théoréme 4.2 (Random List Theorem). Let a set of nb = 2/ N transition lists of length N, independently
and randomly generated. Each list L(N,m,d) may contain an arbitrary proportion m/N of type 1 transitions,
without any specific constraint.



For a given integer n < N, let Ry, denote the number of minimal initial values vo < 2" among the set of
transition lists.
Then R, follows the binomial distribution:

RnNBin<2f(N) 1 )

?9N—-n

This distribution follows directly from the independence of the lists and the successive filtering mechanism
applied to the last N — n transitions.
Define:
e:=n—N+[f(N)].

(i) Bounds via the Central Limit Theorem.
Let 4 < z < 6 be a real number. Then, with probability at least 1 — €, where e = e
— ife>17, then R, >64—8y2z,
— ife <6, then R, <644 8z.

(ii) Bounds via the Berry—Esseen inequality.

For any e < 1073, define:
K = {2 -log, (@)1 + 1.

Then, with probability at least 1 — e, we have:
—ife> K, then Ry, > min:=25"1—/2In(1/e) - V2K,
— ife< K, then R, < maz:=2% +,/2In(1/e) - V2K.

The following values are guaranteed for some standard thresholds:

—22/2,

€ K min max
1073 | 20 520,481 1,052,383
107* | 26 33,519,272 67,144,024
1075 | 33 | 4,294,522,559 | 8,590,379,329

Proof. According to Theorem [3.1} we have
R, ~ Bin(nb, 1/2% ™).

(i) Central Limit Theorem approximation:
Let k = N — n, the number of suffix transitions under analysis.
We apply the classical Central Limit Theorem to the sum of nb independent and identically distributed
Bernoulli variables with constant parameter p =1/ 2k,
This sum defines the variable R,,, with expected value and standard deviation given by:

nb

M::E[Rn]:nb-pzz—k,

o = \/Var(Ry) = \/nb-p(1 —p) = ;Lf (1 - 2%)

As soon as = ;L—,i’ 2 30, the normal approximation becomes accurate in practice. Asymptotically, we

have convergence in distribution:

Bozl D aro1).

In = o nb—oo
We now derive probabilistic bounds for R, using a Gaussian tail threshold z > 0.
— Upper bound (tail on the right):
P(Z, <z)>1—¢ whenever R, <p+z-0, withe:=1—o(2).

We bound successively:

nb nb 1 nb nb

Now suppose nb = 2/ (V) < ol F(NIT, Then,

ol f(N)] [ f(N)]
Rn < Qk +z- Qk .




Define e :=n — N + [f(IN)]. Then e < 6 is equivalent to k > [f(N)] — 6. Since R, is decreasing
in k, the upper bound is maximal when k = [f(N)] — 6. Therefore:

ife < 6then R, < 64 + 8z.

— Lower bound (tail on the left):
Using the Central Limit Theorem, for any z > 0, we have:

P(Z, >z)>1—¢ whenever R, >pu—z-0, withe:=1—®(z).

We start from the inequality:

nb nb 1 nb nb

Now suppose nb = 2/ (N) > olF(N)1=1  Then:

ol F(N)]-1 2TF ()]

Define e :=n — N + [f(N)]. Then e > 7 is equivalent to k < [f(N)] — 7.
Since R, is decreasing in k, the lower bound is minimal when k = [ f(N)] — 7. Therefore:

if e > 7then R, > 64 — 8v/2z.
Numerical remark: For z > 4, the Mills ratio gives z ~ \/21In(1/¢), hence ¢ ~ e =2,

(ii) Approximation with Berry—Esseen Inequality:

— Berry—Esseen Inequality
We apply the Berry—Esseen inequality to the centered and normalized variable

R, —nb-p
Vb p(1—p)’

where R,, denotes the number of minimal initial values below 2" among a large set of nb = 2/(V)
transition lists of length N. Although the process is fundamentally deterministic, the distribution
of R, can be approximated by that of a binomial variable Bin(nb, p), with p = 1/2~¥ ", based on
probabilistic modeling of parity transitions.

This allows us to apply the standard form of the Berry—Esseen inequality, which quantifies
the convergence to the normal distribution for sums of independent and identically distributed
Bernoulli(p) variables.

The third absolute centered moment of a Bernoulli variable is given by

L 1=

p=E[IX —p[’] =p(1—p)*>+ (1 —p)p’ =p(1 —p)(1 —2p+2p°),

which is finite for any fixed p € (0,1). The variance is 02 = p(1 — p), and the Berry-Esseen

inequality yields:

_ B(s C-p C-(1-2p+2p°) G,
B <) o) < Sl = S E - T

with C' < 0.56 an absolute constant.

Let

C-(1—2p+2p%)
(L —p)t/?
which depends only on p. This formulation enables us to derive explicit quantitative bounds
for the probability that R, deviates from its expectation, using Gaussian approximations with
computable error margins.

— Getting the threshold
We aim to ensure that P(Z; < z) > 1 — ¢, and we seek to determine for which values of nb this
inequality holds.
Approximating the Gaussian tail for large z using the classical Mills ratio :

Cp =

1 .2
1-®(2) = e * /2
) 2V 21

10



we substitute z := /21In(1/¢e), which yields:

1— ®(2) ~ °

T JArln(1/e)

According to the Berry—Esseen inequality:

C
P(Z, < 2) > P(2) — —=.
Therefore, we require:
d(z) — o >1-¢
vnb ‘

By substituting the approximation for ®(z), we obtain:

€ Cp
VArIn(1/e) * Vnb <c

To simplify, note that for small £, we have In(1/¢) > 1, so < e. Therefore, this term

&
V4rmIn(1/¢e)

becomes negligible, and we may approximate the condition by:

Cy o (@)2
< e, which implies nb> | — | .
vnb P €

For large N —n (i.e., when we filter over a large number of final transitions), we have p = 1/2N7” <
1, and the constant becomes:

C-(1-2p+2p%) c
Cp=2 TP 2
p(1 —p) VP

Substituting this into the bound yields the condition:

2
nb > <g> SN,
€

Taking logarithms (base 2), we obtain:
C
log,(nb) > 2log, = + (N —n).
Let us define nb = 2/™). Then the inequality becomes:
C
f(N) > 2log, - + (N —n).
This is satisfied as soon as
C
AT =12 (2108, ()| + (V= m).
Let us define the threshold:

K= [210g2 <9)1 +1, andlet e:=n— N+ [f(N)].

£

Then the condition becomes simply:
e> K.

Upper bound (tail on the right): By applying the Berry—Esseen inequality at depth nx =
N —[f(N)] + K (i.e., when e = K), we obtain:

P(Zn, <z)>1—¢, withz=/2In(1/e).

. R, s
Since Zn,, = Kiﬂi, this implies:
o

Ry, <p+z-0, with probability at least 1 —¢,

where o
_ nb _ 2 <9
IN-—ng 2[f(N)]-K — = 7

u= E[RHK]

11



and

a:\/Var(RnK):,/MQ—?N%K) < Vi < V2K,

Therefore, with probability at least 1 — &, we have:
Ry <25 + 2. V2K,

Finally, since R, < Rn, forall e < K ie. n < ng (as the sequence Ry is increasing in k), the
upper bound on R, also applies to R,.

ife < Kthen R, < 2% + 2 - V2K,

— Lower bound (tail on the left):
Since
IP(Zn < 2) = @(2)| = [P(Zn 2 —2) — ®(—2)],
we may reuse the previous estimates in the opposite tail.
By applying the Berry—Esseen inequality at depth nx = N — [f(N)] + K (i.e., when e = K), we

obtain:

P(Zn, > —z)>1—¢, with z=+/2In(1/e).
Since Zn,, = m7 this implies:

o
Ry, > p—z-0, with probability at least 1 — ¢,
where o)
nb 2 K-1

M:E[R7LK}:2N77LK :2|'f(N)'\—K _2 )

and

a:\/Var(RnK):Mu(l—QN%K) < Vi < V2K,

Therefore, with probability at least 1 — &, we have:
Rny > 2571 — 2. V2K,

Finally, since R, > Rn, for all e > K i.e. n > ngx (as the sequence Ry is increasing in k), the
lower bound on R, also applies to R,.

ife > K then R, > k-1 _ . VoK,

Remarque 4.3 (Random List Theorem for Non-Random Sets of Transition Lists).

Conclusion. For sets of transition lists delimited by suitable boundaries, the Random List Theorem can
be applied without any special modification.

In the proofs, we would like to apply the Random List Theorem to sets of transition lists that are neither
random nor independent.

If one were to apply the theorem to the entire set of 2V transition lists of length N, then for every
0 < n < N we would obtain R, = 2™~ by the bijection (see , and nothing would be random. The
difficulty is that if one considers an arbitrary subset of transition lists, without any specific structural
property, the extreme cases cannot be excluded, which makes it difficult to draw any meaningful conclusion.

To overcome this difficulty, recall that m, denotes the number of type 1 transitions among the first
n transitions of £. With this notation in place, we shall apply the Random List Theorem to a family of
transition lists L(N, m,d) satisfying the condition

my > [kn] forall0<n <N,

together with either [kN] < m < N or m = [kN], where k = In(2)/In(3), for instance for the list Ceil(NV)
that we shall study later in Section [f]

Each such list, as in Figure [2| can be interpreted as a discrete path from (0, 0) to (d, m) consisting of N
elementary steps, where each step is either:

e a horizontal move (type 0 transition), increasing d by 1; or

e a vertical move (type 1 transition), increasing m by 1.

In the diagram above:

e The blue line represents the Ceil boundary (a constraint to be respected);

12
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Figure 2: Diagram of transition paths relative to the Ceil boundary.

e The green line is a valid transition list, always staying above Ceil;
e The black line is the classical boundary of the Catalan triangle (without the Ceil constraint);

e Green points indicate the endpoints of valid transition lists for N = 15 (only the intersection point
with Ceil(N) when we restrict to m = k- N);

Note that transition lists passing through the points on the vertical axis (0,n) have the minimal solution
Vo > on—1,

The number of lists passing through each point (d, m) is at least on the order of N, which is very large,
except at (0,m) where m is the extremal value of m; in that case, there is only a single list, but its minimal
solution is far too large and does not belong to the set of admissible solutions.

For n =m +d > 2, at the point (d, m) the probability that v, is even is equal to 1/2.

For the minimal solution vg of a transition list to be less than 2”71, and therefore equal to the value
vo obtained for the restriction to the first n — 1 transitions, it is necessary that the transition ¢,—1 be the
“natural” transition taking vy,_1 to v,.

Conversely, for the minimal solution vy of a transition list to be greater than 2"~ ', and therefore not
equal to the value vo obtained for the restriction to the first n — 1 transitions, it suffices that the transition
tn—1 is not the natural transition from v, _1 to v,.

e For most points (interior points), such as point 1 with coordinates (3,11): the lists passing through
point 1 originate either from point 2 or from point 3.

e For points on the boundary that are preceded by a single “East” step, such as point 4 with coordinates
(5,9): the lists passing through point 4 originate only from point 5.

e In the case where the maximal value of m is taken to be [kNT], then for points with maximal ordinate,
such as point 6 with coordinates (2,10): the lists passing through point 6 originate only from point 7.

In all these situations, a very large number of lists pass through the point, which means that the proba-
bility of v,—1 being even is always 1/2. For the minimal solution vy of a transition list to satisfy vy < 2"71,
it is necessary that the considered transition be the natural one, i.e., that v,—1 is odd at point 2 or even
at point 3. Hence, statistically, there are twice as few lists after accounting for transition ¢,,—1 whose min-
imal solution is less than 2™~ ! as there were with minimal solution less than 2" before accounting for this
transition.

Repeating the same reasoning for all the last transitions, we conclude that for these sets of non-random
and non-independent lists, the same result holds as in the random case.

We may note that translating the Ceil boundary horizontally to the right by prefixing it with 2p type 0
transitions does not alter the previous argument.

Under these circumstances, the Random List Theorem can be applied without any special modification.
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Remarque 4.4 (Heuristic Approach to Establishing the Existence of Solutions). Using the Central Limit
Theorem, we observe that in the case e = 6, which is equivalent to N —n = [f(N)] — 6 and hence
2[F (N1 /oN=1 — 64 we obtain:

R, <64+82=96<128 =27 for z =4.

This indicates that the number of minimal values is almost halved at each step when analyzing the last
N — n transitions. What initially appeared chaotic at the individual level becomes a smooth continuum
when considering the system globally.

Even though there is no rigorous mathematical justification for it, the process being deterministic allows
us to reasonably conjecture that, by adding 74+6=13 more steps (to account for the remaining fluctuations),
we reach R,—13 = 0, meaning that there are no solutions vy < on—13,

From this, we heuristically infer the following rule:

If e < =7, then R, =0 (no solution vg < 2") with very high probability.

The probability is increasing as e < —7.
This rule is not mathematically rigorous, but it provides a useful intuition before applying formal rea-
soning with larger residual solutions.

Remarque 4.5. The validity of this estimate relies on the assumption that the sample of transition lists
is drawn uniformly at random. Biases in the selection—such as favoring lists associated with small vo—can
significantly distort the statistical outcome. This has been confirmed by discrepancies observed in numerical
experiments based on non-uniform or partitioned samplings.

Remarque 4.6. In earlier versions of this document (up to version 4.2.1 inclusive), the probabilistic rea-
soning relied on Corollary which states that P(vy < 2NV7%) = 2% To bound the number of values
vo < 2V7*_ denoted by Ry, the last k transitions were considered, and the Central Limit Theorem was used
to estimate the associated binomial distribution at each step.

At each stage, Rr was bounded above and below around the expected proportion, using an interval
centered at n/2 with growing width. This allowed a valid interval to be maintained at each step, but
without control over the global error probability.

The weakness of this approach lies in the fact that extreme cases (beyond a certain number of standard
deviations) were not taken into account. The assumption that Ry could not fall outside this interval relied
on the idea that extreme cases could not occur, due to the underlying process being deterministic rather
than purely random — a mathematically incorrect reasoning.

Indeed, if one fixes a threshold zr = 4, corresponding to a local error ex &~ 3.35 x 10™%, then the
probability that at least one of the k steps falls outside the interval is bounded above by kej (since the
probability of a union is less than the sum of individual probabilities). For significant values of k (as used
in the proof with a = 20, ¢o = 285, p = 100, giving k = ¢co - @ — (ca + p) = 285 x 20 — (285 + 100) = 5580),
this leads to a global error greater than 1, rendering the argument invalid.

In the current version, this mistake is addressed by consolidating the k steps into a single argument,
relying on the fact that Ry ~ Bin (nb, 2%) (see Theorem .

Remarque 4.7 (Comparison between the asymptotic (Central Limit Theorem) and rigorous (Berry—Esseen)
approaches). In informal reasoning, it is common to apply the Central Limit Theorem (CLT) to approximate
a binomial distribution by a normal distribution as soon as the condition

nb-p 2 30
is met. In our context, this allows filtering up to N —n = f — 6 when nb = 27, leaving only
Ry ¢~2°=64

residual elements to analyze.

However, this approximation relies on asymptotic convergence without any explicit error bound. It is
therefore not directly usable in a formal proof system such as Coq or Lean.

In contrast, the Berry—Esseen inequality provides a fully explicit bound on the deviation from the normal
distribution. When applied with € = 1073, it restricts the filtering depth to

N —n = f — 20,
leaving a much larger number of residual elements:
Ry 20 ~ 229 ~ 108,

This loss of efficiency is the price to pay for obtaining a **rigorous and formally justifiable** upper bound
on the error probability, which is essential for formal verification.

Summary: the CLT provides sharper bounds but is not formally provable; Berry—FEsseen is more conservative
but suitable for rigorous proofs.

14



5 The Approximate Reduced Syracuse Sequence: (v))

n

We consider an approximate version of the reduced Syracuse sequence, where the term 3v,, + 1 is replaced
with 3v,. This approximation is intuitively justified when vg is sufficiently large and n remains moderate,
in which case the additive term 41 becomes negligible compared to the dominant multiplication by 3.

We construct a sequence (v;,) that reproduces the same transition types (even or odd) as the exact
sequence (Vn)n>o0. It is defined by:

vy = vo > 0,

’

Upy1 = 2" if vy, is even (type 0 transition),

’
vn

Upi1 = —= if v, is odd (type 1 transition).

Note that the elements of the approximate sequence (v;,) are generally not integers.

5.1 Decomposition of v, in Terms of v/, and a Rational Residue
Proposition 5.1. For all n > 0, there exists a rational number r, € Q such that
Un = v; +7rn.

Proof. The proposition holds at n = 0 with ro = 0.
Assume it holds for some n > 0: v,, = v, + r,,. We prove it holds at n + 1:

e If v, is even:

/ !
_Un _UntTa _ U Tn _ s Tn
Ul =y =Ty Ty Ty Tt
So rp41 = %
e If v, is odd:
" _3vn+1_3(1);—#7"")—&—1_%_'_37"”—&—1_1), +3rn—|—1
T Ty T 2 2 9 2
So rp41 = 3”"72*1
By induction, the proposition holds for all n > 0. O

Remarque 5.2. The sequence (ry,) can be defined recursively based on the transition types of (v,):

ro =20
Tn . .

Tntl = 5 if v, is even
3rn+1 . .

Tnil = on T2 ;_ if vy, is odd

Note that the recurrence relation for (r,) depends only on the parity pattern of (vy) (i.e., the transition
list), and not on the actual values of (v},) or the initial value vo. It acts as a rational "residue” that encodes
the discrepancy and allows reconstruction of the exact sequence (v,) from its approximation (v},).

In particular, r, > 0 for all n > 0.
Remarque 5.3. The sequence (r,,) remains small compared to (v;,) when vo is large and n is moderate,
justifying the approximation v, = v,,. This observation will be quantified in the next section to control the
error term in applications of the approximate model.

5.2 Explicit Expression of v, in Terms of vy and r,

Proposition 5.4. Let L(N,m,d) = (to,...,tn—1) be a transition list of length N, and let m,, denote the
number of type 1 transitions among its first n entries. Then for all 0 < n < N, we have:

37nn
277.
where (ry) is the sequence defined in Proposition .

Un = 'UO‘I'Tny

Proof. We recall that v;, evolves under multiplicative factors of 1/2 and 3/2, depending on the transitions.
After m, type 1 transitions and (n — m,,) type O transitions, we have:

.3\ 1\ 3mn
Uy = 5 5 Vo = o Vo.

Using vn, = v), + Tn, the result follows. O
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Remarque 5.5. This decomposition highlights a multiplicative factor 3m/2N depending only on the global
structure of the transition list £(IV,m,d), and a residue rn depending solely on the positions of the type 1
transitions—mnot on the initial value vg.

This is a key step toward applying the Random List Theorem discussed in Section @

5.3 Closed-Form Expression for r, Based on Transitions

Théoréme 5.6. Let L(N,m,d) be a transition list of length N. For any 0 < n < N, let m, denote the
number of type 1 transitions among the first n elements, and let ind(i) denote the index (starting from 0) of
the i™ type 1 transition in the list. Then:

e [fm, =0, then r, =0.

e [fm, >0, then:
3mn mn Qind(i)
2n 3

i=1

Tn =

Proof. We proceed by induction on n.
Base case: n =1
e For £ = (0), m; =0 and r = 0, so the formula holds (empty sum).
e For £L = (1), m; =1, ind(1) =0:
3020 1

T1

B T

which matches the closed-form expression for ry.
Induction step: Assume the formula holds at rank n. We show it holds at n + 1:
e If t, =0, then my+1 = m,, and:

3mn Mn 2ind(7l)

p— Tn p—
Tnt1 = 9 T ontl 3i
i=1
e Ift, =1, then mp4+1 = m, + 1, and:
, _ 3rnt1
n+1l — 2 .
Substituting r,:
1 Mn ) . .
T+l = 72714»1 <3 . ngnfl . 21nd(2) + 2n> ’
i=1
1 &n S
— gMnt1 =i, Zmd(z) + 30 . 2'n>
n+1 Z )
2 (7,1
1 Ml S
_ s Z 3m"+177, . and(z)'
i=1
Thus, the formula holds at n + 1. O

5.4 Effect of the Order of Type 0 Transitions on the Growth of r,

Proposition 5.7. Among all transition lists L(N, m,d) with m type 1 and d type 0 transitions, the final
residue rn satisfies:

e rx is minimal when all type 1 transitions occur first (denoted LRmin),

o 7y is mazimal when all type 0 transitions occur first (denoted LRmax).

min __ 3™ 1 max __ 3 m 1
N =on T N =(5) b

Proof. From Theorem [5.6] we write:

In particular:

3m m 2ind(i)
TN 3i

=1

TN
Shifting a type 0 transition earlier increases some indices ind(¢) without decreasing any. Since z — 2% is

strictly increasing, rn increases accordingly.
Minimum: all type 1 transitions first:

ind(z) =i—1, forl<i<m.
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min 3= 27t 3™ i\ o3 (1-(5)7) 1
N —Q*N;:l: 30 _21\1';1:(3) '3—2N'(§ '3
3™ 1
TN T a4

Maximum: all type 0 transitions first:
ind(i) =d+i— 1.

We factor out the 2¢ term: . ‘
2d+7,71 B 2d 3m m 2171

max Smm
"N :TZ 3 9N Zgi'

=1 =1

e 24-3™ 2\ 3\
= (- ())- ()

Remarque 5.8. The order of type 0 transitions can exponentially influence the residue rn. Between the
two extreme configurations:

O

max
N 9d

~

min

N
This justifies focusing on subsets of transition lists where the residue ry remains uniformly bounded. Such
control is essential when comparing the exact trajectory (v,) to its approximation (v},).

5.5 Final Residue for a Concatenation of Transition Lists

In this section, we study how the final residue Ry = 7, evolves when the transition list Lo = £L(No, mo, do)

is obtained by concatenating a collection of sublists L1, ..., Ly.
For each k = 1,...,n, we define:
e L, = L(Ny,my,dr): a transition list of length Ny = my + d,
3m
o [l = : the multiplicative factor associated with Ly,

2Nk
® Ry =rn,: the rational residue associated with Ly,

1
o fr= Hle 7 the reciprocal product of the F; up to index k.

We recall from Proposition that the final value of a block of transitions satisfies:
U(Ng, L) = Fh - v(0,25) + B

Proposition 5.9 (Concatenation formula for residues). Let Lo = L1 + L2 + -+ + L, be the successive
concatenation of the lists L. Then the final residue Ro associated with Lo satisfies:

n n Smo

Ro = Fp - kaRk, where Fy = HFk = SN

k=1 k=1

Proof. We prove the result by induction on the number n of concatenated blocks.
Base case: n =2 Let Lo = £1 + L2. From Proposition [5.4} we have:

V(Ng,£2) = F2 - v(0,25) + R2,  and v, 5) = v(wvy,2q) = F1 - v(0,21) + Ra-

Therefore:
V(N o) = Fa2(Fivo + R1) + Re
= Fovo + 2 R1 + Ry,
s0 Ro = F>R1+ Rz = Fo(fiR1 + f2R2).
The general case follows by iterating this recurrence. O

Corollaire 5.10 (Repeated iterations of a fixed block). If Lo =n - L1 (concatenation of n identical copies
of L1), then the total residue is given by:

1— FT"
1-F

n—1
Ro=Ri-» Ff =R
k=0
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Proof. This is a special case of Proposition where Fj, = F; and R, = R for all k. Hence:

n

n—1
RO:F{L~Z%:R1~ZF{“.
k=0

k=1

Remarque 5.11. If I} ~ 1, let F1 =1 — uy with w3 < 1. Then:
Flnzl—nul, SO Roanl,

yielding a linear approximation for the total residue.

Proposition 5.12 (Concatenation with arbitrary multiplicities). Let

Lo = Zpk Ly + Lny1, with pr € N,

k=1

Then the total residue is given by:

n R Pe—1
Ro=Fo- (anpp > Fi) + R,
=177

k=1 11; i=0
Proof. Expand each block py - L as pi successive copies and apply Corollary [5.10] to each. The total
contribution from block k is scaled by the product of the inverse multiplicative factors from previous blocks.

O

Remarque 5.13. If each Fj = 1, writing Fj, = 1 — u, with ux < 1, we obtain the approximation:

"~ peRxk
RO%FO‘Zﬁ+Rn+1-
k=1 Hj:l Ey?

1, this simplifies to:

Q

In particular, when H§:1 F;’J

Ro~Fo -y prRi+ Ros.

k=1
This quasi-linear behavior of the total residue is a useful heuristic in probabilistic models involving repeated
motifs.

Remarque 5.14. The concatenation formulas derived in this section provide a powerful tool to compute
the residue rny of complex transition lists by decomposing them into elementary blocks. This modularity
will be instrumental in the analysis of filtered or structured transition patterns in subsequent sections.

6 Study of the Transition List Ceil(V)

We focus here on a particular transition list, denoted Ceil(/N), defined by a strict control on the proportion
of type 1 transitions.

Définition 6.1. Let m, be the number of type 1 transitions among the first n transitions in a list L(N, m, d).
The list Ceil(N) is defined by the condition:

My = ln—2n forall 0 < n < N.
In3

6.1 Threshold of the Trajectory: v, > vy for All 0 <n < N
Proposition 6.2. Let (v,) be the Syracuse sequence associated with the list Ceil(N). Then:

vn > v  for all0 <n < N.

Proof. By definition of Ceil(N), we have for all n > 0:
2 1 m2
"7 |In3 In3
This implies:
mp-In3>n-In2 ifand only if 3™" > 2",
Using Proposition [5.4] we write:

Mn
Un = on < Vo + Tn,
with 7, > 0. Therefore:
Un > Vo,
as required. O
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6.2 Characterization of Type 0 Transitions in Ceil(V)
Proposition 6.3. In the list Ceil(N), the transition t,, is of type 0 if and only if the factor

— 3m71

= on

satisfies F, > 2, for all0 <n < N.

Proof. We analyze the condition F;, > 2:

3 My Mn

o > 2 if and only if > 1 if and only if

2n+1 —

my-In3>(n+1)-In2.

This is equivalent to:

In2

In2
n > — 1 —_—=.
my > (n+1) 3

if and only if m, >
In3

(n+ 1)} = M.

Since the list Ceil(N) satisfies m, < m,+1 by construction, equality must hold: m,, = mu+1. Therefore, t,
is a type O transition.
Conversely, if t,, is of type 0, then m,, = m,+1, which implies:

In2
n > |- 1 )
M = "1113 (n+ )1
and thus:
Smn > 9
on = 7
Hence, the equivalence is proved. O

6.3 Block Decomposition of Ceil(n)
Lemme 6.4. Let the following constants be given:
o N = 1054,
e =484, and p < N,
L1 = Ceil(N),
Lo = Ceil(a) followed by a type 0 transition,
L3 = Ceil(p).
Define, for all1 < k < n:

_ kE(ln2 —InF,) — Zf:_ll g; In Fx
qk In F >

where F,, = ?’;n—nn with my = [122 - n] in the list Ceil(n).
Then, for alln > 1:

3

(g L1 + L2) + Ls.

k=1

Ceil (Z g N+n(a+1)+ p) =

k=1

Proof. The proof is by induction on n.

Case n = 1 (with p = 0): We seek the smallest value of g such that one of the transitions in the
repeated pattern Ceil(N) reaches the mutation threshold, i.e., becomes a type 0 transition when F, > 2.

We consider Fygnyn = (FN)? Fp, where Fy = Fips4 &~ 1.00004. Among all values F,, = 32";" for0<n<N
that are strictly less than 2, the three largest are:

ntl £, wp, | m2-Inf.
In FN
485 1.99795657 | 0.69212494 23.4168
401 1.99378892 | 0.69003681 71.2504
317 1.98962997 | 0.68794868 119.0839
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We observe that Fusq ~ 1.99796 is the largest value strictly below 2, so we set a = 484. Any earlier
transition ¢, (with b < a) satisfies F, < F, and therefore reaches the mutation threshold later.
We now determine the smallest integer gi such that:

Fq1N+a - (F‘N)q1 'Fa 2 27

which leads to:
In2—1InF, © Pn2flnFa—‘
s e = |-

h = In Fn In FN

Using the numerical values:
In F, ~ 0.69212494,

In Fx ~ 0.00004365,

o o [0:693147 — 0.692124947 _
= 0.00004365 =

It is important to justify why it is always the transition at position a that mutates first. This follows
from:

e F, being the largest among the F,, < 2, so (Fn)? - Fy, exceeds 2 before any other (Fn)? - Fy;

e and the construction of Ceil(n), which ensures that when multiple transitions simultaneously cross the
threshold, the leftmost one is selected.

Thus, transition ¢, mutates first, and we have:

Ceil((1N +a+ 1) = ¢1 - Ceil(N) + Ceil(a) + type 0.
For instance, with N = 1054, a = 484, ¢q1 = 24, we obtain:

Ceil(25781) = 24 - Ceil(1054) + Ceil(484) + type 0.

This concludes the first step of the block decomposition.

Case n = 2: After the first mutation at position ¢1N + a + 1, the factor becomes:

Fa
2

F= (FN)™.

We want the next mutation to satisfy:
F2
(FN)2-F>2 so (Fy)&te. 7‘1 > 2.

Taking logarithms:

In2 — w) —ql
o= 2In2—-InF,) —q1In Fx _ 93,
lnFN

Hence, the second mutation occurs at:
(@1 +q2) - N+2(a+1),
and the corresponding block decomposition is:
Ceil(((1 +q2) N+2(a+1)=q- L1+ Lo+ q2- L1+ Lo.
In our example: N = 1054, a = 484, q1 = 24, g2 = 23, so:

Ceil(50508) = 24 - Ceil(1054) + Ceil(484) + 0 + 23 - Ceil(1054) + Ceil(484) + 0.

Inductive step: Suppose the decomposition holds up to index n:

Ceil (i aN + n(a + 1)) = i (qLl1 + L2) .

k=1 k=1
The residue factor after n steps is:
n
Fn
F= Fa)® ) - 2o
(H( N) ) on
k=1

We want the next mutation to satisfy:

F. (FN)Qn+1 . %

> 2

I
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SO:

n+1
qu InFxn+(n+1)InF, > (n+1)In2.
k=1
Solving gives:
(n+1)(In2—-InF,) — > 7, qeIn Fy
n+1 = .
In FN
This completes the inductive proof. O

Remarque 6.5 (On the choice of N). We choose N = m + d = 1054, corresponding to (m,d) = (665, 389),

such that:

m 665 In2
—=— =1 11 Xi=—=~1 1129.
d 389 70951156 > 3 _m2 70951129

That is, N provides a rational over-approximation of the constant X.
This choice is not unique; any pair (m,d) yielding % > X suffices to construct a comparable decompo-
sition. We selected N = 1054 for its numerical precision and reasonable block size.

6.4 Bounding r, in the Ceil(N) List

Théoréme 6.6. For the transition list Ceil(N), we have:

%<rn<mn, for all0 <n < N.

Proof. The proof relies on two complementary arguments depending on the size of V.

1. Direct numerical verification for N < 10 Explicit computation of 7, for 0 < n < 10° confirms
the bound numerically. For instance:

71000000 = 198875.6767 ~ 0.315 - 11000000 5
which clearly satisfies the inequality.
The entries in the tables below are sorted to highlight:
e Table 1 (b, = rn — my): most negative additive gaps;
e Table 2 (an = rn/my): smallest multiplicative coeflicients;

e Table 3 (¢, = Tn/my): largest multiplicative coefficients.

Table 1: b, Table 2: an, Table 3: ¢,
bn n an n Cn n
-0.5 1 0.2404498 | 780239 || 0.7213476 | 301994
-0.75 2 || 0.2404499 | 478245 || 0.7213469 | 603988
-1.344 5 || 0.2404504 | 176251 0.7213466 | 905982
-1.375 3 || 0.2404506 | 956490 || 0.7213466 | 125743
-1.562 4 || 0.2404506 | 654496 || 0.7213444 | 427737
-1.762 8 || 0.2404508 | 352502 || 0.7213442 75235
-2.508 7 || 0.2404516 | 830747 || 0.7213440 | 729731
-2.672 6 || 0.2404517 | 528753 || 0.7213435 | 251486
-3.321 | 10 || 0.2404522 | 226759 || 0.7213428 24727
-3.611 | 13 || 0.2404524 | 705004 || 0.7213421 | 553480
-3.688 | 16 || 0.2404526 | 403010 || 0.7213416 | 855474
These results confirm that:
0.24-m, <rn, <0.72-m, so %<rn<mn.

2. General asymptotic case for N > 10 We rely on Lemma (block decomposition of Ceil(n))
and on residue accumulation formulas from Section [5.5
Let: N
No=> g N+n(a+1)+p,
k=1

with its decomposition:

Ceil(No) = > (g - £1 + L2) + L3,
k=1
where:
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e L1 = Ceil(N) is the repeated block,
e L5 = Ceil(a) followed by a type 0 transition,
e L3 = Ceil(p) with p < N.

From the additive residue formula, we approximate:

2n
TNy ~ Fo - <ZP¢R2'> + Ron+1,
=1

with typical numerical values:
e Ry =rn ~ 159.99,
e Ry =r1,/2~ 7362,
® R3 =1, bounded independently of n,
o [y, Fh~1,s0 Fp =~ 1.

Noting that Ry ~ “t1 - Ry, we derive:

TNy A Fo - ((Z%) Ry +nR2> + Rs.

k=1

Using the approximation R ~ “]'\*,1 - Ry, we get:

- +1 No —
TNO%F()-((Z(M-FTL-GN >R1>+R3—Fo-< ONp-R1>+R3.
k=1

The error term R3 — Fp - % Ry is uniformly bounded (less than 309), and can be neglected asymptotically.
We therefore approximate:

N
TN0%F0~WO~R1.

Since m = m,, is the total number of type 1 transitions in Ceil(No) and m; = 665 is the number of such
transitions in Ceil(N), we also have:
No _ m

m
= , so rn, ~ Fy-— - Ry
N mi ma

Bounding Fj: Recall that in the list Ceil(XN), we have

3m

m:"h(12 N-‘, so that FOZQ—N.

In3’

This implies:
In2 In2

— N < — - .-N+1.
In3 <m= In3 +
Hence, there exists a real number ¢ € (0, 1] such that:
In2
e
K FE R
We then express Fy as:
3m A
FO = 27N = 36 . < B > .
%11:23 In 2
But 2% = <~ =1, so this simplifies to:
Fy=3°
Since € € (0, 1], we conclude:
1< Fy <3.
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Final bounding of r,,: Since Fy € (1,3) and Ry = 159.99, we write m = m,, for the number of type 1
transitions up to index n, and m1 = 665 for the number of type 1 transitions in £1 = Ceil(NN). By the block
structure and the approximation established above:

m
Tn%F()-f-Rl.

mi1

Using Fo < 3, we obtain the inequality:

&-m<rn<3-&~m.
mi mi
Since R 159.99
1 .
o ~ 0.2406
mi 665 ’
we deduce:

0.2406 - m < rp, < 0.7218 - m.
In particular, for all sufficiently large n, this yields the simpler and uniform bound:

Lz
? <Tn<mn7

which confirms the claim. O

7 Study of the Transition List JGL(N,v) (Just Greater List)

Objective. Let N € N* and vy € N*. We are interested in the set Up(IV, vo) of transition lists £L(N, m, d)
such that vg is the minimum of the associated orbit:

for all n € [1, N], wvp > vo.

We define JGL(N,vo) as the minimal element of Up(V, vg) with respect to the partial order introduced
in Section 2:4] namely:
El(N,ml,dl) S £2(N,m2,d2) if and only if
for all n € [0, N], mn,c, < Mn,c,.

This minimum exists because Up(N,vo) is finite. It has two principal properties:
e it maximizes rny among all admissible trajectories with vy as minimum;
e it provides a sharp lower bound on the number of type 1 transitions required.

We show that, for a suitable N depending on vg, one has:
JGL(N, vg) = Ceil(N).

This identity allows us to:
e determine the minimal cycle length in which vg is a strict minimum;
e bound from below the number of type 1 transitions for any list in Up(V,vo);

e demonstrate the practical relevance of the approximate sequence v), as a classifier for minimal trajec-
tories.

Definition. The list JGL(N,vo) is a sequence of N transitions to, t1,...,tn—1 satisfying:
e for all n € [1, N], we have v, > vo, so vg is the minimum of the trajectory;
e among all such sequences, transitions of type 0 are prioritized so that, at each step n, the ratio v, /vo
is minimized.

We encode JGL(N, o) as a binary word of length N over {0, 1}, for instance: 1101.

Remarks.
e Knowing JGL(N, v9) determines ry, the associated residue.

e [t maximizes rn among all lists such that vg is the minimal value, since type 1 transitions are deferred
as late as possible (see Section [5.4)).

e By construction, it is the minimal element of Up(N,vo) under the transition-order partial order.
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7.1 Step-by-Step Construction of the List JGL(N, )

Assume we know the Syracuse dynamics up to vo < maxSyr. For vg > maxSyr, we construct JGL(N, vo) as
follows:

Case N = 1. We require v1 > vo, which is only possible if to = 1 (type 1 transition). Then:

3 1 3! 1
= Yo + = —vp + 71, with 7‘125.

vl 2 21

Thus, JGL(1,v0) = 1.

Case N =2. Tryt; =0, yielding:
v —U—l—év + -
T Ty

We require v2 > vg if and only if vg < 1. Therefore:
e if vyo =1, then JGL(2,1) = 10 (trivial cycle);
e otherwise ¢t; = 1, and we obtain JGL(2,v0) = 11.

Case N = 3. The transition t; = 0 is admissible since v2 > vo, hence:

vy 3 5 _
v3= o= 23v0+ g S0 JGL(3,v0) = 110.
Case N =4. Tryt; =0:
=89, 5
T2 16" 16

To satisfy v4 > vo, we must have vy < % < maxSyr, hence t3 = 1, and:

JGL(4,v0) = 1101.

vg >0

Figure 3: Illustration of the compensation by 7, of dips of v}, below vy.

General case. Figure|3|shows how even if v, < vg temporarily, the additive term 7, can compensate for
this dip, allowing v, > vo.
Assume JGL(N, vo) = L(N, m,d) has been constructed. Then:
3m

UN vo +TN.

ZQ—N

We test whether ¢x = 0 is admissible, i.e., whether

UNL1 = %\7 >wvo ifand only if v < 274% =: VMax(N).
2N

e If vy < VMax(N), then ty = 0 is admissible. In that case, JGL(N + 1,v0) # Ceil(IV 4 1), as the
prioritization of type 0 transitions defers a type 1 that Ceil would apply sooner.

e If vy > VMax(N), then ¢ty =1, and JGL(N + 1,v0) = Ceil(N + 1).
o If vg = VMax(N):
— if N =1, we recover the trivial cycle;

— otherwise, this defines a non-trivial cycle beginning at vg.
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7.2 Construction Tests for the JGL List

We only report the indices n for which VMax(n) reaches a new maximum (record). These points are critical,
as they indicate where JGL(n, vo) differs from Ceil(n) whenever VMax(n) > vo.

Ezxample test for N = 20,000,000

R
The maximal difference between the true value r,, and the approximated value F, ZLomis approximately
m

1
4942.93, obtained for n = 19999460, but the corresponding value is still relatively small in context:

rn = 9,099,227.8454.

k m d n VMax(n) __nln2
In| VMax(n) |

1 1 0 1 1=20 o0
2 3 1 4 A 22.202 2
3 5 2 7 A 24617 1.527
4 17 9 26 ~ 26.755 3.849
5 29 16 45 ~ 28139 5.532
6 41 23 64 ~ 29-760 6.557
7 94 54 148 ~ 211241 13.167
8 147 85 232 ~ 212247 18.943
9 200 116 316 ~ 213178 23.980
10 253 147 400 ~ 214.257 28.056
11 306 178 484 ~ 216.137 29.993
12 971 567 1538 ~ 217.865 86.092
13 1636 956 2592 ~ 218.683 138.736
14 2301 1345 3646 ~ 219-244 189.463
15 2966 1734 4700 ~ 219.683 238.790
16 3631 2123 5754 A 220.051 286.973
17 4296 2512 6808 A 220.374 334.154
18 4961 2901 7862 ~ 220.667 380.418
19 5626 3290 8916 ~ 220.939 425.811
20 6291 3679 9970 ~ 221197 470.354
21 6956 4068 11024 A 921445 514.048
22 7621 4457 12078 ~ 221.689 556.874
23 8286 4846 13132 A 221.931 598.794
24 8951 5235 14186 ~ 222174 639.747
25 9616 5624 15240 A 222.423 679.648
26 10281 6013 16294 A 222.682 718.373
27 10946 6402 17348 A 222.955 755.750
28 11611 6791 18402 ~ 223249 791.527
29 12276 7180 19456 A 223573 825.334
30 12941 7569 20510 ~ 923944 856.581
31 13606 7958 21564 A 224.387 884.253
32 14271 8347 22618 A 924.955 906.349
33 14936 8736 23672 ~ 226.791 917.831
34 15601 9125 24726 A 227.619 895.243
35 47468 27766 75234 ~ 229.960 2511.159
36 79335 46407 125742 ~ 232277 3895.674
37 190537 111456 301993 ~ 239-369 7670.740
38 10781274 6306640 17087914 A 247594 359038.469
39 64497107 37728388 102225495 A 250.657 2017986.285
43 6586818670 3853041920 10439860590 ~ 207.085 155621208.2
44 | 72057431991 | 42150895612 114208327603 ~ 271414 1599245808.3

Remarque 7.1 (Growth of the logarithmic coefficient in the record table). The final column in the

table, which records the coefficient
nln2

In|VMax(n)|’
shows an overall increasing trend as k increases. This coefficient reflects the logarithmic scaling
between the index n and the associated maximum value VMax(n).
The only irregularities in this growth occur at small values of k, specifically k = 1,2, and more
significantly at k = 34. These exceptions can be attributed to the relatively small size of n, where
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rounding effects and the limited precision of the approximation

m
X~ ——
d+1

can still noticeably affect the outcome. In the case k = 34, the value n = 24,726 is still relatively small
in the asymptotic regime, and local fluctuations may impact the logarithmic ratio more strongly.

From that point onward, the values of n increase rapidly. For instance, at k = 39, we already
have n = 102,225,495, and the size of the underlying records becomes so large that local fluctuations
in the approximation are negligible. Consequently, the logarithmic coefficient continues to grow.

Rather than computing further entries in this table—which would require increasingly prohibitive
computational effort—we may instead estimate the growth of r,, directly (see Section using the
approximation X ~ m/(d + 1), where X is the limiting constant and the pair (m,d) is derived from
the Stern—Brocot method.

As we shall show in Theorem [7.3] the corresponding values of n = m + d are exactly those
appearing in the record table. Based on this approximation, one can observe that the coefficient in
the last column increases without exception up to & = 200, where

n = 355,531,412,311,100,514,263,425,314,010,019,812,97,
with a corresponding coefficient of approximately
1.4394 x 10%.

This illustrates the long-term growth behavior and confirms that each new record in the approxima-
tion sequence corresponds to increasingly large values of n, reinforcing the exponential separation
in the logarithmic ratio.

7.3 Characterization of the Records of VMax(NV)
The values of N for which VMax(NN) reaches a record are precisely those for which N +1 =m + d,

where the fraction 7} is a lower rational approximation of the real number

B In2 ~ In2
~ In3—-In2 1In(3/2)

These approximations are obtained via the Stern—Brocot tree, which recursively generates all
irreducible fractions starting from % and %.

We denote:

® app;, = % the k' lower approximation of X;

o nF) = mk) 4 k),

e A record of VMax(N) is reached for N = n(*®) — 1,

Notation.

Generation method. Initially, set a = d = 0 and b = ¢ = 1, with % representing infinity. At
each step, we compare the mediant Z_tfl of the two bounds ¢ and § with X, and update one of the
bounds depending on whether X is greater or smaller. Only the lower approximations are retained:
at each step, a new fraction is recorded only if it is strictly less than X.

Table of the first lower approximations of X Below we give the first values of k for which
appy, = %, along with the corresponding values of N = m+d, and the approximation error |% — X|
weighted by powers of d.

k m d| N=m-+d =X d? - |diff| d3 - |diff|
1 1 1 2 | -7.0951x10~1 | 7.0951x10~1 | 7.0951x10~1
2 3 2 5 | -2.0951x10~! | 8.3805x10~1 1.6761
3 5 3 8 | -4.2845%x10~2 | 3.8560x10~1 1.1568
4 17 10 27 | -9.5113x10~3 | 9.5113x10~ 1 9.5113
5 29 17 46 | -3.6289x103 1.0488 17.829
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k m d| N=m+d =X d? - |diff| d3 - |diff|

6 41 24 65 | -1.1780x1073 | 6.7850x 101 16.2841

7 94 55 149 | -4.2038x104 1.2717 69.9411

8 147 86 233 | -2.0897x10~% 1.5455 132.9139

9 200 117 317 | -1.0958x10~4 1.5001 175.5079
10 253 148 401 | -5.1832x10° 1.1353 168.0282
11 306 179 485 | -1.4085x107° | 4.5129%x10~1 80.7802
12 971 568 1539 | -4.2491x10~6 1.3709 778.649
13 1636 957 2593 | -2.4094x10~6 2.2067 2111.786
14 2301 1346 3647 | -1.6331x10° 2.9587 3982.4399
15 2966 1735 4701 | -1.2049x10~ 3.627 6292.8596
16 3631 2124 5755 | -9.3354x10~7 4.2115 8945.2939
17 4296 2513 6809 | -7.4619%x10~7 4.7123 11841.9915
18 4961 2902 7863 | -6.0906x10~7 5.1293 14885.2013
19 5626 3291 8917 | -5.0436x10~7 5.4625 17977.172
20 6291 3680 9971 | -4.2179%x10~7 5.712 21020.1524
21 6956 4069 11025 | -3.5500x10~7 5.8777 23916.3914
22 7621 4458 12079 | -2.9988x10~7 5.9597 26568.1378
23 8286 4847 13133 | -2.5360x10~7 5.9578 28877.6403
24 8951 5236 14187 | -2.1419x10~7 5.8723 30747.1477
25 9616 5625 15241 | -1.8024x10~7 5.7029 32078.9088
26 10281 6014 16295 | -1.5068x10~7 5.4498 32775.1725
27 10946 6403 17349 | -1.2471x10~7 5.1129 32738.1875
28 11611 6792 18403 | -1.0172x10~7 4.6923 31870.2026
29 12276 7181 19457 | -8.1214x10~8 4.1879 30073.4667
30 12941 7570 20511 | -6.2818x108 3.5998 27250.2285
31 13606 7959 21565 | -4.6220x1078 2.9278 23302.7368
32 14271 8348 22619 | -3.1169x10~8 2.1722 18133.2404
33 14936 8737 23673 | -1.7459x108 1.3327 11643.9881
34 15601 9126 24727 | -4.9171x1079 | 4.0951x10~! 3737.2287
35 47468 27767 75235 | -9.7079x10~10 | 7.4848x10~ 1 20783.1259
36 79335 46408 125743 | -1.9476x10710 | 4.1945%x10~1 19465.8376
37 190537 111457 301994 | -1.4274x10712 | 1.7732x102 1976.3845
38 | 10781274 | 6306641 17087915 | -4.7737x10~15 | 1.8987x10~1 | 1197432.5633

Observation. These values of N —1 coincide exactly with the indices of the records of VMax (N —
1) observed in Section up to N = 17,087,915, which confirms the correspondence with the
Stern—Brocot approximations.

Nature of the real number X and behavior of its approximations. For N = 301994, the
approximation obtained for X corresponds to a particularly accurate fraction, satisfying:

177 x 1072

1
moye L |
<o £

i
which makes it one of the best observed approximations. It coincides with a convergent in the
continued fraction expansion of X.

The continued fraction expansion of X begins as follows:

[1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,15,1,9,2,5,7, 1,
1,4,8,1,11,1,20,2,1,10,1,4,1,1,1,1,1,37,4,55,1,1, 49, 1]
Although reading these coefficients does not fully characterize the nature of X, one observes that
the growth is moderate, with occasional spikes — a typical behavior of "usual” transcendental num-

bers (in the sense of Baker and Mahler). This contrasts with Liouville numbers, whose coefficients
grow rapidly and which admit extraordinarily sharp Diophantine approximations.

Thus, the real number X = lnl(ré/ZQ) is assumed to satisfy Roth’s lower bound:
m C
’X*E‘ >ﬁ’ for a11€>0,

27



which excludes any sequence of too fast approximations. In our case, all observed lower approxima-
tions m/d empirically satisfy the bound:
m

1
X_E > 7 with § = 3, except for d = 1.

This observation justifies the use of § = 3 in later estimates.

However, this is not a formal proof. It cannot be ruled out — depending on the behavior of the
convergents at very large scale — that § might be greater than 3, or even grow asymptotically. Such
behavior may be considered in the intended applications of this property.

Property. For any fraction % with N = m + d, we have the equivalence:

3m . ) m
1—2—N<() if and only if E<X’
In2
here X = ———.
where In3 —1In2
Proof. Let N =m + d. We compute:
mo_o_m In2 ~ mIn3—Nln2
d ~d mm3-m2 dIn3-In2) "

Rewriting the numerator yields:

min3—NIn2  In(3™/2V)
d(ln3 —1n2)  d(ln3 —1n2)’

Hence:

m - x.

— <1 if and only if i

O

This equivalence explains why the records of VMax(N) occur precisely at positions associated
with lower rational approximations of X.

Théoréme 7.2. The only values of N for which VMax(N) reaches a record are those of the form

In2

3oins obtained via the

N = n®) — 1, where 7;((:)) is a lower rational approximation of X =
Stern—Brocot tree.

Proof. Step 1 — Exhaustive traversal via the JGL algorithm.
In the construction of JGL(IV,vp), all pairs (m, d) are explored in increasing order of d, for each

m, until the condition
gm ) m
W<1 that is, ﬁ<X
is met.

This process ensures that all reduced lower approximations of X—i.e., those generated by the
Stern—Brocot tree—are eventually encountered, since the algorithm scans all minimal pairs (m, d)
with increasing d.

Step 2 — Empirical verification.

Numerical computation for N < 301,994 confirms that each record of VMax(N) indeed occurs

at a value N = n(®¥) — 1, where n*) = m®) 4+ d*) and 7(?((:)) is a lower approximation of X.
Step 3 — Asymptotic analysis for N > 301,994.
From Section we use the asymptotic expression:

3™ m

7" % —_— ——

N 2N mi

Hence, the maximal admissible value vg (i.e., VMax(IV)) satisfies:

TN 3™ m R

Ry, where Ry =159.98555, m; = 665.

VMax(N) & —————— N — - —  —————
21— 585) 2V mi 201 - i
We distinguish three cases based on the quality of approximation dﬂﬂ versus the last known
record ZL((;) :
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m®)

e Case 1: 1 is a better approximation than 7.

Then: g

R X FNTT
VMax(N) ~ p—
mi(In3 -n2) X - 7
m m(P)
Since 53t > ?;nT and X — 7 < X — %, we get VMax(N) > VMax(n® —1). A new
record is thus achieved.
(®)

e Case 2: 75 = "0y

Then m = km®, d+ 1 = kd?), and
3m 3m(p) k 3m(”)
oN+T — | g | < Gae

so VMax(N) < VMax(n(?) —1). No record is reached.

m(P)

is a worse approximation than ——, that is:

e Case 3: OR

m
1
()
m m
o x oM™
d+1- >~ dw

Using the identity
3m m

we deduce that:

(p) gm 3m(p)
m m . .
X—m>X—W 1fand0nly1f W<W
Then the value of VMax(N) is:
VMax(N) = N

3m o\
2 (1 o 2N+1)

m
Using the approximation ry ~ —— R; - —, we obtain:
2N mq
3m m
2N ! mq

VMax(N) = — 7 gm \
2 (1 T 9N +1)
Linearizing the denominator via the approximation 1 — e™" & u for small u > 0, where:

wi=(d+1)(In3 —In2) (dT1 —X) :

we find:
3m
RlX IN+1
Max(N) ~ .
VMax(N) mi(In3 —1In2) x __™
d+1
m mP)
Since —— < 37 and X — _mo > X — m both the numerator is smaller and the
9N+1 on(®) d+1 dw®’

denominator is larger than for the previous record. Hence:
VMax(N) < VMax(n® — 1),

and no record is attained in this case.

Conclusion. Only Case 1 corresponds to the appearance of a new record, which occurs precisely
when ﬁ is a new lower approximation of X. O
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Conclusion. The only indices N for which VMax(N) reaches a record correspond exactly to the
lower approximations of X in the Stern-Brocot tree. Each record is obtained for N = n(®) — 1.

7.4 Theorem: Sufficient Condition on N for JGL(N,v) = Ceil(N)
Théoréme 7.3. Let k € N*, and let vg = 2% be a fized threshold. If:

VMax(n*~ — 1) < vy < VMax(n® — 1),
then for all N such that 0 < N < n®) — 1, we have:
JGL(N,vg) = Ceil(N).

Proof. According to the previous theorem, the only indices N for which JGL(N, vo) may differ from
Ceil(NV) are those where VMax(N) > vg. These are precisely the record indices corresponding to
lower approximations of X.

If vo > VMax(n*=Y — 1), then for all N < n®) — 1 that are not record indices, we have
VMax(N) < wvg. Thus, the construction of JGL(N,vy) exactly matches that of Ceil(/N), which
implies the equality of the two lists.

Therefore, no N < n(*) — 1 triggers a different transition from that of Ceil(N), and the equality
of transition lists is preserved throughout the interval. O

7.5 Corollary: Minimal Length of a Cycle for a Given Minimum v,

Corollaire 7.4. Let k > 1 and vy = 2% such that:
VMax(n*=Y — 1) < vy < VMax(n® —1).

Then any cycle whose minimal value is vy has length > n®) | and if such a cycle exists, its minimal
length is exactly n(*).

Remark. This result is consistent with the conclusion of Shalom Eliahou (see [4]) regarding mini-
mal cycle lengths, though the approach developed here differs significantly in technique and structure.

Proof. We set n(9 = 1 and VMax(0) = 0. For k = 1, we retrieve the trivial cycle 1 so 2 so 1, of
length 2, corresponding to n(!) = 2.
Now assume there exists a nontrivial cycle of length N > 2 whose smallest element is vy = 2¢.
Such a cycle corresponds to a finite sequence (vg,v1,...,vy_1) satisfying:

e a transition list L(N,m,d) of length N = m + d,
e with vy as the minimum along the orbit: i.e., L(N,m,d) € Up(V,vp).

By construction, the following inequality holds with respect to the partial order defined in Sec-
tion 2.4k
L(N,m,d) > JGL(N, vg).

We now consider three possible cases based on the number of type 1 transitions:
(1) Case m < mygL(n,uv,)¢ This is excluded by the minimality of JGL(N,vg) in Up(V, vo).

(2) Casem = mjar(n,v,)¢ The transition list has the same number of type 1 transitions. According
to Theorem as long as N < n(®), we have:

JGL(N,vg) = Ceil(N),

and since Ceil(N) produces vy > vp, this contradicts the periodicity assumption. Therefore,
no such cycle can occur for N < n(¥),
(3) Case m > mjgL(n,u)¢ In this case, the list has more type 1 transitions, leading to an even

faster growth of the orbit. Given that N < n*) implies JGL(N,vg) = Ceil(N), we also have
m > Meeji(n®), hence again N > n(k),

Therefore, in all cases, any cycle having vy as its minimal value must satisfy N > n®) . If such a
cycle exists, then the smallest possible admissible length is n(¥). O
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7.6 Theorem: Minimal Growth of ¢, for o > 20
Théoréme 7.5. Define co = n*) — 1 for the smallest k such that

VMax(nt=1 — 1) < vy = 2% < VMax(n® —1).

Then for all « > 20, we have:
co > [285 .

Proof. We first examine numerical data from Section [7.2] For k = 16, we observe:

5754
VMax(4700) < 22° < VMax(5754), and g = 2877 > 285,
This confirms the result for oo = 20.
Moreover, for k from 16 to 38, and for each worst-case value vg = |VMax(n*) — 1)], the ratio

n®) /o always exceeds 285. For instance, for vy = 1,086,054, we compute:
5754
a = log,(1,086,054) ~ 20.05, and W 286.97 > 285.

For k£ > 39, we enter a range where explicit computation is no longer feasible, and we rely on
asymptotic estimates. From Section we recall the bound:

m(®
VMax(n® — 1) < X 3 !

~2mi(In3 —I2) 2n® Ty _ 7;((:)) ’

where X = lnénjm ~ 1.7095, Ry = 159.98555, and m; = 665.

Since the approximations

)
Zy converge to X, we may assume:

(k) 1
m

— > 3 _
X - =5 2 @y with § = 3,

as justified in property
Moreover, from n®*) = m®) 4+ d*) and % ~ X, we deduce:
n®)

d®) ~
1+X

~ 0.3694 - nF).

Substituting into the previous estimate yields:
VMax(n®) — 1) < O - (d®)3 < 0" (n)3,
for explicit constants C, C’. Thus, the condition vy = 2% < VMax(n®) — 1) implies:
20 < - (n(k))S so n® > 2(a+c)/3,

for some constant ¢ = log,(C') & 5.2.
For instance, for a = 40, this gives n(®) > 215 = 32 768 > 285 - 40 = 11,400.

Conclusion. We have shown that:
e JGL(N,vp) = Ceil(N) for all N < n® —1 when 2* < VMax(n®) — 1);
e and that n® — 1 > [285 /] for all a > 20,
thus establishing the theorem.
Remarque 7.6. This proof relies on the lower bound X — % > 1/ d?, but remains valid for any
exponent d > 3, provided that the bound on « is adjusted accordingly.

O
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Remarque 7.7 (Extended remark). In the final application of the Random List Theorem, it is
essential that the Syracuse conjecture has been verified up to 2%. The choice a = 20 ensures this
condition while keeping the bound ¢, > 285 v as small as possible.

However, since the Syracuse conjecture has in fact been verified up to , one could safely take
a = 40 without requiring any additional assumption. In this case, using the data from Table 6.2
(specifically lines 38 and 39), we observe that:

268

Ca > 359,000 ] for o > 40.

This shows that with a = 40, the lower bound obtained in the conclusion of the theorem would
be substantially larger than the conservative estimate c, > 285, thereby further reinforcing the
robustness and flexibility of the method.

Similarly, we can readily derive the following lower bounds:

Cq > [ 638a] for a>22
Co > [2,017,000 ] for o > 48,
co > [1,599,245,000 ] for o > 68.

7.7 Upper Bound on the Number of Transition Lists in Up(N, v)

Théoréme 7.8. Let ng = 2f(N) denote the number of transition lists of Up(N,vg). Then, for all
N satisfying 5000 < N < ¢4, one has

[f(N)] <0.953 N.

Proof. Each such list can be interpreted as a discrete path from (0,0) to (d,m) consisting of N
elementary steps, where each step is either:

¢ a horizontal move (type 0 transition), increasing d by 1; or

e a vertical move (type 1 transition), increasing m by 1.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
Figure 4: Diagram of transition paths in Up(N,vg) relative to the JGL boundary.

In the diagram above:

e The blue line represents the JGL boundary (a constraint to be respected);

e The green line is a valid transition list, always staying above JGL;
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e The black line is the classical boundary of the Catalan triangle (without the JGL constraint);
e Green points mark the endpoints of valid transition lists;

e Blue points represent transition lists admissible in the Catalan triangle but invalid under the
JGL constraint;

e Black points lie outside both domains.

We aim to upper bound the number ng = 2f(N) of transition lists £(N, m,d) that are greater
than or equal to JGL(N, vg)—that is, to Ceil(N)—for N < ¢,.

To obtain a first upper bound on the number of valid transition lists, we relax the strict constraint
imposed by the JGL(N,vg) boundary. Instead of requiring each transition list to remain above JGL
at every intermediate step (as in the definition of the partial order), we consider the larger set of
lists whose endpoint (m, N —m) satisfies

m > [kN],

where 109
n
k=— =~0.6309
In3

is the lower bound for the number of type-1 transitions obtained earlier.

In other words, we only enforce a condition on the total number of type 1 transitions, without
local constraints on the structure of the list.

This is precisely the advantage of having obtained a lower bound for the number of type-1

transitions for JGL(N, vp).
We obtain: Ny
N
ng < Z ( >,
m=[kN] m

which is the total number of transition lists with a sufficiently high number of type 1 transitions,
regardless of their distribution.

In such a binomial sum centered around its maximum (as here, for m near kN > N/2), the
dominant term is approximately the largest coefficient. We use the standard approximation (or an
elementary upper bound) that the entire sum is at most the number of terms times the maximum
coefficient.

Here, the number of terms is at most N — [kN| < N, and the maximum occurs near m = |kN|.
Thus:

no < (N — [kN]) - (ng).

ng < 0.37N - (L/gw)’

For clarity, we also write:

using the fact that 1 — k ~ 0.369...
Using Stirling’s approximation (suitably precise for N > 5000):

<N> N VarN ()"
VRN (2™ e (AR

(15\7) ~ 27rk:(1 —k)N <k’“(1 —114)1““>N'

Taking the logarithm in base 2 gives:

)(1—k)N'

This simplifies to:

F(N) < logy(0.37TN) — %ng (@2rk(1 = k)N) = N [klogy k + (1 — k) logy(1 — k)] .

In2

n3’ we obtain:

Grouping terms and evaluating numerically with k& =

F(N) < f1(N) = 0.9499556 N + 1 log, N — 1.7089.
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For N > 5000, this yields:
f(N) < f2(N) = 0.9525 N.
since
d(N) = fo(N) — f1(N) = (0.9525 — 0.9499556) N — %log2 N +1.7089

is a strictly increasing function of N for N > 5000, and d(5000) > 2 > 0.
And finally :
[f(N)] <0.953 N.

7.8 Conclusion

Summary of results.
e The transition list Ceil(V) is defined by the rule:

In2
MCeil(N), n = {123 n-‘ , forall0<n<N.

e For any vy = 2% € N, we denote by Up(V,vg) the set of transition lists £L(N,m,d) such that
the associated orbit remains greater than or equal to vy over N steps.

e The list JGL(N,vg) (Just Greater List) is the minimal element of Up(N,wvg) with respect to
the partial order defined in Section

e For N > 5000, the cardinality of Up(IV,vp) is less than 20-93 .

e It follows from Remark [{.3] that the Random List Theorem applies to the set of transition lists
Up(N7 UO)'

Synthesis of contributions. We have shown that, for each o > 1, there exists a constant c,
such that for all N < ¢4, the minimal list JGL(N,vo) coincides with Ceil(N). In other words,
below this threshold, the optimal transition structure is independent of vy and governed solely by
the logarithmic proportion In2/1n 3.

This leads to two important consequences:

e an explicit lower bound on the number of type 1 transitions in any list L(N,m,d) € Up(N, vp):

In2
m > ’71113 -N —‘ ;
e a constructive criterion for generating elements of Up(N,vp): any list satisfying
L(N,m,d) > JGL(N,vg)
(in the sense of the cumulative number of type 1 transitions) belongs to Up(N,vg).

As a consequence, we have established that the minimal possible length of a cycle whose minimal
value is vg = 2% is strictly greater than c,. This lower bound is obtained without requiring the
cyclic condition vy = vg, but simply from the orbit constraint and the structure of the transition
list.

Furthermore, we have proved that :

Ca > [ 638c] for a> 22,
Ca > [359,000c] for o > 40,
Ca > [2,017,000 ] for v > 48,

co > [1,599,245,000] for a > 68.
highlighting the rapid growth of the minimal cycle length as a function of the initial height vg = 2.

Perspective. A central intuition guiding this work is that for large vy and moderate n, the exact
orbit sequence (vy,) is closely approximated by the idealized sequence (v},), due to the boundedness
and positivity of the residue r,. In this regime, the additive corrections induced by the transitions
are insufficient to compensate for the addition of an extra type O transition. This observation will
be key in estimating the asymptotic cardinality of Up(N,vg) and justifies the application of the
Random List Theorem, which underlies the probabilistic part of the argument in the remainder of
the proof.
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7.9 Empirical Consistency Based on Glide Records

In this section, we test the Heuristic Approach to Establishing the Existence of Solutions (see re-
mark [£.4) of the Random List Theorem (see [4.2)).

We rely here on the data from glide records compiled by Eric Roosendaal (see [§]), which are
considered representative of extreme cases. Each value g is expressed as 2", and we compute the
deviation e = n — N 4+ f(N), where N = N, is the number of steps in the sequence v such that
vp > vg, and f(N) is defined by the relation Up(N, gy.) = Ceil(N) = 2/ (V).

Notably, all 34 recorded values satisfy the condition |e] < 6. Furthermore, the empirical mean of
le] is very close to log,(3), indicating that the g deviate by only about a factor of 3 on average from
the central value predicted by the model (which corresponds to fewer than 2 steps). This stability
is remarkable given that these values were not designed to satisfy the theorem’s conditions — quite
the contrary.

Although these results provide empirical support for a heuristic existence condition (namely
when e > —7) in an extreme regime, they will not be used in the remainder of the main proof of the
conjecture. The proof relies solely on formally derived statements derived from the main Random
List Theorem.

The table below summarizes the data, sorted by increasing values of e.

k g = 27 n| Nu N Up(N) =27 T f(N)/N e
30 1008932249296231 | 49.84 | 1445 886 8.7154561 % 102%° 0.9371 | -5.87

3 27 4.76 96 59 | 1108067472387578 0.8471 | -4.26
23 12235060455 | 33.51 892 547 | 2.04003975x101°3 0.931 | -4.20
32 180352746940718527 | 57.32 | 1575 966 6.1421750% 10272 0.9381 | -2.49
18 63728127 | 25.93 613 376 | 4.43922580x1010% 0.9246 | -2.44
19 217740015 | 27.70 644 395 | 1.11865878x10110 0.9255 | -1.72
26 13179928405231 | 43.58 | 1122 688 3.0526516x 10173 0.9342 | -1.67
27 31835572457967 | 44.86 | 1161 712 | 2.16228481x 10290 0.9347 | -1.64

4 703 9.46 132 81 1.44591018x 1021 0.8678 | -1.25
28 70665924117439 | 46.01 | 1177 722 | 1.56857569x 10703 0.9349 | -0.99
33 | 1236472189813512351 | 60.10 | 1614 990 4.3806510x 10279 0.9383 | -0.95
22 2788008987 | 31.38 729 447 6.7791985x 10727 0.9277 | -0.94

1 3 1.59 6 4 3 0.3962 | -0.83
21 1827397567 | 30.77 706 433 7.2027523x 10120 0.9272 | -0.75
34 | 2602714556700227743 | 61.18 | 1639 | 1005 7.880458 x 10283 0.9384 | -0.74

2 7 2.81 11 7 13 0.5286 | -0.49
25 2081751768559 | 40.92 988 606 | 1.33534773x10170 0.9326 | 0.06
31 118303688851791519 | 56.72 | 1471 902 3.2432244x10%°% 0.9373 | 0.18
14 13421671 | 23.68 468 287 2.2358186x1077 0.9184 | 0.27
12 1126015 | 20.10 365 224 3.09780237x 1051 0.9119 | 0.37
20 1200991791 | 30.16 649 308 7.8702628 x 10110 0.9256 | 0.55
16 26716671 | 24.67 486 298 2.93913359x 1032 0.9193 | 0.62
15 20638335 | 24.30 476 292 6.0245795 % 1080 0.919 | 0.64

6 35655 | 15.12 220 135 2.12896013 %1036 0.8939 | 0.80

5 10087 13.3 171 105 7.895732x10%7 0.8826 | 0.97
17 56924955 | 25.76 502 308 2.09716980 % 1035 0.9202 | 1.19
24 898696369947 | 39.71 897 550 1.4304029x101°% 0.9311 1.80

9 381727 | 18.54 282 173 1.13556863x 1077 0.9035 | 1.85
13 8088063 | 22.95 401 246 5.30115714x 1057 0.9145 | 1.92

7 270271 | 18.04 267 164 3.36050358 x 10%7 0.9019 | 1.95
29 739448869367967 | 49.40 | 1187 728 7.8482111x 10297 0.935 | 2.03

8 362343 | 18.47 269 165 6.1418640x 102 0.9017 | 2.25
10 626331 | 19.26 287 176 7.8281401x10%7 0.904 | 2.35
11 1027431 | 19.97 298 183 7.8823885x 1019 0.9058 | 2.72

‘We obtain:

le] = 1.5845 ... ~ log,(3).

8 Study of the Lists JGLy,(N,vy) for p >0

The list JGL(V, vg) captures only the constraint that the initial value vy remains the minimum over
the first IV steps of an orbit.
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However, in order to apply the Random List Theorem (see Section 7 it is necessary to identify
at least 30 solutions of the considered problem.

The purpose of the lists JGLy, (N, vp) is to ensure that the first p + 1 values of the orbit are
solutions of the sample.

Throughout this section, we restrict ourselves to values of vy that are indeed minimal for some
trajectory in Up(N,vp), i.e., satisfying vy = min{v, | 0 <n < N}.

8.1

Definition of the List JGLy,(N, v)

Let N € N*, p € N with 2p < N, and suppose vy = min{v, | 0 <n < N}.
We define the list JGLg, (N, vg) by

JGLoy(N,v9) := 00---0 JGL(N — 2p,vp).

2p transitions

Remarque 8.1.

e The notation represents a binary word: the list begins with 2p type 0 transitions, followed by

the N — 2p transitions from JGL(N — 2p, vp).

e For p = 0, the definition reduces to the classical case:

JGLo(N, ’Uo) = JGL(N, ’Uo).

e By construction, this list satisfies for all 1 < n < N the inequality:

Up > 227 or equivalently,

8.2 Definition of the Set Up,,(V, v)
We denote by Up,, (N, vo) the set of transition lists £L(N,m,d) satisfying

[:(N, m, d) Z JGLQP(N, Uo)

under the partial order defined in Section [2.4] This means that at each step m, the cumulative
number of type 1 transitions does not fall below that of JGLq, (N, vo).

8.3 Dynamical Comparison of Shifted Orbit Values
Théoreme 8.2. Let {v,} be an orbit such that vg = min{vy : 0 < k < N}. Then, for all0 <n < N,

Figure 5:

UN+ 1 UN 1
— > . = and thus UNin

> —=— Up.
Uy 922n o — 922n n

Illustration of the theorem. The black line marks index N; the red curve depicts a worst-case

trajectory, while the green dashed lines highlight the comparison between v,, and vy 4y,
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Diagram Commentary:

e The black vertical line corresponds to the index IV;

e The red trajectory illustrates the extreme case where vy < v, for all 0 < n < N, with initial

transitions of type 1, and vg > vy, for small values of n;

e The green dotted lines help to compare vy, vy, vo with vy, vn41, Un42 respectively.

Note: All segments connecting v, to vy, are of length N, for every n.

Proof. The result is proven by induction on n € N*, with n < N.
Base Case (n =1): We have:

Jvg +1 .
v < 0 < 2ug (since vy > 1),
thus: .
v
2 > .
U1 2
Also,
UN UN+1 1
v > — S0 > —
NH+L =" oy 2
Combining:
Un41 N4 Uy o 1oy 11 oy
v UN vog v 2 vy 2 4 v

Thus the case n = 1 is verified.

Inductive Step: Suppose the result holds for some n < N, that is:

UN+n > 1 U7N
Uy, 22n gy
We aim to show it holds for n + 1.
‘We have: 0. 41 )
v )
Upp1 < ——— <2v, so >,
Un+41 2
and: .
UN+n UN+n+1
UN 12> —_— > .
et 2 UN4n 2
Therefore:
UN+4n+1 _ UN+4n+1 . UN+n Un

Y

Un+1 UN+n Un, Un+4+1

8.4 Corollary — Uniform Bound on Shifted Values

1 1 oy I 1
9 2%% "9 7 92(nt1)

Thus, the property holds for n + 1. By induction, it holds for all 0 < n < N.

UN
Vo

Corollaire 8.3. Let N € N*, vg = min{v, |0 <n < N}, and 0 <p < N. Then, for all0 <n < N,

Up4n Z ZTP * Up.

Proof. We proceed by induction on p.
Base Case (p =1): For any 0 < n < N, we distinguish two cases.

e If 0 <n < N, then n+1 < N and thus v, > vy (since vg = min{vg : 0 < k < N}). As

v1 < 299 (from the previous proof), we have:

1

(% >
- s V1.
9 = 1

e

Vl4n Z

e If n =N, then vy n > % . % cvp > % -v1 by Theorem 7.1 (as vy /vg > 1).
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So the property holds for p = 1.

Inductive Step: Assume the property holds for some p with 0 < p < N. We want to prove it
for p + 1.
For 0 < n < N, the inductive hypothesis gives:

Uptn = 55 U

Since Vppn+1 = Vptn/2 and vpi1 < 2v,, we have:

1 (1 1 1
Upintt 2 5\ g3 U | = gmpat U 2 gagpry T UpeL

Thus, the property is true at step p + 1. By induction, it holds for all 0 < p < N. O

8.5 Sufficient Condition on N to Ensure JGLy,(N,v) = 02Ceil(N — 2p)
Théoréme 8.4. Let k € N*, and let vg = 2% be a fixed threshold. If
VMax(n*=Y — 1) < vy < VMax(n®) — 1),
then for every N such that 0 < N < n®*) — 1, we have:
JGLay(N,vg) = 0% Ceil(N — 2p),
and the number of type 1 transitions satisfies:

In2

MJGLs,(N,wo) = [ln?) : (N - 2p)—‘ .

Proof. By definition of JGL2, (N, vg), we have:
JGLay(N,vp) := 0% - JGL(N — 2p, vp).
Under the given assumption, Theorem ensures that for all 0 < N — 2p < n®) — 1, we have:
JGL(N — 2p,v9) = Ceil(N — 2p).

Hence, we conclude:
JGLay(N,vg) = 0% - Ceil(N — 2p).
Finally, since Ceil(N — 2p) contains exactly
In2
— (N -2
Ln 5 ( p)w

type 1 transitions, the list JGLq,(V, v9) contains the same number. O
8.6 Upper Bound on the Number of Transition Lists in Up,,(V, Vo)

Théoréme 8.5. Let ng = 2/N) denote the number of transition lists of Upy, (N, vo). Then, for all
N satisfying 14000 < N < ¢, and 200 < p < 0.05 N, one has

[f(N)] <12p+0.95N.

Proof. We want to upper bound the cardinality ng = 2/(™) of the set Up,,(NN,v). To this end,

we consider lists £(N, m, d) satisfying only the final constraint m > [k(N — 2p)], where k = 22 ~
0.6309. This constraint is weaker than requiring the entire trajectory to remain above JGLa, (N, vg
pointwise, but suffices for an effective upper bound.

We observe the inequality:

[k(N —2p)] > kN —1.262p > [kN] — 3p.
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Thus, we upper bound the cardinality of Up2p(N ,Ug) as:
N
N
S (m) .
m=[kN]|— %p

We bound each term in the sum by the largest among them, attained for m = [kN] — %p, which

is valid as long as m > % — a condition satisfied whenever N > 22 x 638 > 14,000 and p < 0.05 N.
The number of terms in the sum is bounded by:

N —[kN|+2p<037TN+ 3p<05N.

To bound (kNZX 3p
2

the central binomial coefficient ( k]X[) Using the recurrence formula for binomial coefficients:

Sp—1 :
N I kN—-i (N
kN —3p) L4 N—kN+i+1 \kN)

), we use an estimate based on the ratio between this shifted coefficient and

kN
N—kN>

(" 3) < (20) " (&)

Hence, the total number of admissible lists satisfies:

k \* (N

We apply Stirling’s approximation for (k]}]\,), as in Method 1:

Each factor in the product is at most SO:

F(N) < log,(0.5N) + gplogz (1kk>
- %1og2 (27k(1 — k)N) — N [klogy k + (1 — k) log,(1 — k)] .

By grouping constants and factoring terms:

k
f(N) < log,(0.5) — %log2 (2rk(1 —k)) + ;plogz (1—1@)

+ %bgz(N) — N [klogy k + (1 — k) logy(1 — k)]

After numerical evaluation we obtain

f(N) < —1.2745 + 1.1604 p + 3 logy N + 0.9499556 N.
For convenience, let us introduce the functions

f1(N,p) = —1.2745 4+ 1.1604 p + 1 logy N + 0.9499556 N,  fo(N,p) = 1.2p+0.95 N.
We then consider their difference
d(N,p) = fo(N,p) — fi(N,p) = 1.2745+(1.2—1.1604)p — 3 logy N + (0.95—0.9499556) N

This function is increasing in both p and N for N > 14,000. Moreover,

d(14,000; 200) = 1.2745 4 0.0396 x 200 — L log, (14,000) 4 0.0000444 x 14,000 > 2.9 > 0.

Hence, whenever N > 22 x 638 > 14,000 and p > 200, the following upper bound holds:

[f(N)] <12p+0.95N.
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8.7 Conclusion

According to the corollary established in Section 84] if vy is the minimal value along an orbit
associated with a transition list in the set Up(V,vp), then at least the first p + 1 values of the
orbit—mnamely vg, v1, ..., v,—satisfy the following properties:

e For every 0 < n < p, the value v, is itself a minimal value for a transition list belonging to the
set Upy, (N, vp), as defined in Section

e In particular, each of these values lies in the interval:
Up € [vo, 2Pvg] for all 0 <n <p.

This ensures that the set Up2p(N , o) effectively captures at least the first p+ 1 distinct solutions
of the associated problem.

Moreover, for all thresholds vg = 2% with a > 20, and for every N < ¢,, the sufficient condition
of Theorem remains satisfied. As a consequence, the list JGLo, (NN, vg) coincides with the shifted
version of the canonical list:

JGLay(N,vg) = 0% Ceil(N — 2p).

This equality confirms that, up to N < c,, the structural behavior of the filtered lists JGLo),
remains entirely predictable and independent of vyg.

Moreover, we have shown that if ng = 2/(") denotes the number of transition lists of Up,,(V, vo),
then for all N satisfying 14,000 < N < ¢, and 200 < p < 0.05 N, one has

[f(N)]<1.2p+0.95N.

Furthermore, by Remark the Random List Theorem also applies to the set Upy, (N, Vo).

9 Proof of the Collatz Conjecture

Remarque 9.1 (Equivalent Statements of the Collatz Conjecture). The Collatz conjecture (also
known as the 3z + 1 conjecture or the Syracuse problem) admits several equivalent formulations,
each highlighting a different aspect of the conjectured dynamical behavior.

The conjecture is equivalent to the following three statements:
(1) (Convergence to 1)
For every vy > 1, there exists an integer n > 0 such that v, = 1.

(2) (Strict Descent)
For every vy > 1, there exists n > 1 such that v, < vp.

(3) (Absence of Non-Trivial Cycles and Divergence)
The sequence (v,,) admits no cycles other than the trivial cycle {1,2}, and there exists no v
such that (v, ) diverges (i.e., tends to +00).

Each of these statements captures a key facet of the expected behavior of the sequence (v,,): state-
ment (1) expresses convergence, (2) ensures the absence of strictly stationary trajectories above
1, and (3) excludes both non-trivial periodic behavior and divergence. Their equivalence is well
established in the literature (see, for example, Lagarias [7]).

Proof. The Collatz conjecture has been verified numerically for all initial values vy < 258 as of
January 15¢, 2025.

We propose an inductive proof, based on the following three statements, assumed true for all
values strictly less than vy = 2%:

(i) There exists no non-trivial cycle whose minimum value is strictly less than vg.
(ii) No orbit starting from a value < vg diverges.
(iii) No orbit starting at Wy < vy reaches a cycle whose minimum is vy.

The argument relies on the Random List Theorem (see Section []) and ultimately reduces to a
counting problem.
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Base case. The conjecture holds for all vg < 2% with ap < 68.
Several values of a € {20, 22, 48,68} will be used throughout the proof, depending on the context.
Thus, assertions (i)—(iii) are satisfied at this level.

Inductive step at vg = 2%. Let o > ap. We assume the validity of (i)—(iii) for all values < vy,
and aim to establish them at v.
A possible counterexample must fall into one of the two following categories:

(a) A non-trivial cycle whose minimal value is exactly vp;
(b) A divergent orbit beginning at vg.

By the induction hypothesis, no cycle or divergence can occur for a value < vyg.
Let N = ¢o,. We will prove that vy cannot belong to a trajectory in Up(N, vg), which suffices to
exclude both cases (a) and (b), because:

e Any cycle with minimum value vy must have length strictly greater than N;

e Any divergent orbit starting from vy would need to belong to Up(N,vg) for all N.

Assertion (iii) is particularly important: we must ensure that the initial value is indeed the
minimum over the first IV terms of the orbit. If some Wy < vy led to a cyclic orbit with vy as
its minimum, we would need to exclude the corresponding transition lists, as they would represent
neither a length-N cycle nor divergence; yet Wy would be the minimum of its orbit, invalidating the
reasoning.

Such a situation does not occur here: the value 1 is the smallest possible and is the minimum of
the trivial cycle {1,2}. No transition list needs to be excluded. Thus, assertion (iii) is automatically
verified as long as no additional cycle exists.

As an illustration, consider the extended variant v, 1 = 3”3+5 for odd v,,. In this case, the orbit
of vg = 3 reaches the cycle {19, 31,49, 76,38} even though 3 < 19. This orbit is called pre-cyclic,
and the corresponding transition lists must be excluded. Nothing similar occurs in our setting.

Since N > «a, we are only concerned with minimal solutions of the trajectories. Any non-minimal
solution must be built from a minimal one, and its value is necessarily greater than 2%.

e Method 1: Based on the structure of the lists JGL(N,vo) (see Section [7.8). The cycle or di-
vergence is identified by the minimal value vy. We apply the Heuristic Approach to Establishing
the Existence of Solutions (see to show that no solution is possible.

In this case, we choose ag = 20, and then ¢, > [285«a] and [f(N)] < 0.953 N.
We set n = « (since vg = 2%), and compute the gap:

e=n—N+T[f(N)] <a—285a+0.953-285a = —12.395 q.

As soon as a > 20, we get e < —247.9 < —7, and thus the heuristic approach implies that no
solution exists. Although this method is heuristically well motivated, it lacks a full theoretical
justification.

Assuming use of the heuristic approach, no trajectory starting from vy = 2% is compatible
with the existence of a non-trivial cycle or a divergent orbit. This suffices to validate the three
assertions of the induction hypothesis at rank vg.

This method relies solely on a property that has been numerically verified, but not formally
proven, and therefore carries no mathematical weight in a strict sense. However, the encour-
aging results it yields serve as a motivation and foundation for the following method, which is
mathematically rigorous.

e Method 2: Based on the lists JGLq, (N, vg) (see Section . Here, the cycle or divergence
is identified by the p values vg,vy,...,v, of the orbit for which vy is the minimum. The set
Upzp(N ,v0) is considered, and we show that the number of possible solutions is strictly less
than p + 1, which leads to a contradiction. This method lies on the Random List Theorem and
thus constitutes a fully satisfactory proof from a formal standpoint. Several values of p and
ap will be used throughout the proof, depending on which part (CLT or Berry—Esseen) of the
theorem is applied and on the desired probability threshold required to obtain a contradiction.

We will use values of ag € {22,48,68} to ensure prior verification of the conjecture up to 2°.

For vy = 2%, depending on the chosen value of g, we will select values of N equal to the
corresponding lower bounds of ¢,, namely [638 a], [2,017,000 «], and [1,599,245,000 «].
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We fix p < 0.05N and consider the first p+ 1 values of the orbit associated with the first N = ¢,
steps. Since each v; satisfies v; € [vg, 2Pvg[ for 0 < i < p, we apply the theorem with n = a+ p,
accounting for the logarithmic scale (base 2). Under these conditions, we expect to find at least
p + 1 minimal solutions belonging to transition lists in the set Upy, (N, vo).
Application of the Random List Theorem :
We compute:

e=n—N+[f(N)],

and we have the following upper bound:
e<n+12p—0.05N.

— Using the Central Limit Theorem (CLT):
Let 2 =4, so that e = 1 — ®(4) ~ 3.2 x 107°.
According to the theorem, if e < 6, then

R, < 64+8- 2 =096,

with probability at least 1 — €.
To obtain a contradiction, we compute e for a value of p + 1 significantly larger than 96,
aiming to reach a regime where e < 6.

* For ag = 22, we apply the theorem with
a>22 n=a+p, N=[638a], 200<p=300<0.05xN.

Substituting into the expression for e, we obtain an upper bound that is strictly de-
creasing in a:

e<22p—-309a <660—679.8=—-19.8 <6.

According to the Random List Theorem, such a value of e implies that the number of
solutions is strictly less than 96. However, to generate a cycle or divergence, we would
require at least p + 1 = 301 minimal solutions below 2™.

This leads to a contradiction: under the binomial distribution governing R,,, we cannot
have more than 96 values with probability greater than 1 — ¢, yet we require at least
301.

Therefore, we conclude that the recurrence hypothesis holds at level vy = 2.

* For ag = 48, we apply the theorem with
a>48, nm=a+p, N =1/2,017,000«], p=2,000,000< 0.05N.

Substituting into the expression for e, we obtain an upper bound that is strictly de-
creasing in a:

e < 2.2p— 100,849 a < 4,400,000 — 4,840,752 = —440,752 < 6.

This again results in a contradiction, as the number of required solutions greatly exceeds
the theoretical upper bound: p + 1 = 2,000,001 > 96.

The discrepancy is sufficiently large to allow for a safe and reliable application of the
Berry-Esseen inequality.

— Using the Berry—Esseen inequality:

x For ap = 48, the previous computation with p = 2,000,000 yielded a value of e <
—440,752 < 6 < 20.
Given that 2,000,001 > 1,052,383, the Random List Theorem, together with the bino-
mial distribution governing R,,, yields a formal contradiction — rigorously confirmed
via the Berry-Esseen inequality with probability at least 1 — &, where ¢ = 1073,

* For ag = 68, we apply the theorem with
a > 68,n=a+p, N =[1,599,245,000a], p = 2,000,000,000 < 0.05N.

Substituting into the expression for e, we obtain an upper bound that is strictly de-
creasing in a:

e < 2.2p—179962,248a < —1,037,432,864 < 6 < 26.
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Given that 2,000,000,001 > 67,144,024, the Random List Theorem, together with the
binomial distribution governing R, yields a formal contradiction — rigorously con-
firmed via the Berry-Esseen inequality with probability at least 1 — &, where ¢ = 1074,
Therefore, by a proof by contradiction, we conclude that the recurrence hypothesis
must hold at level vg = 2.

In this Method 2, the application of the theorem ensures complete formal justification.

Ultimately, verifying the conjecture up to

248 is sufficient to obtain a formal contradiction, even

when using the Berry—Esseen inequality.
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