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Abstract

The Syracuse (Collatz) conjecture is a simple yet notoriously difficult open problem in mathematics.
Given a positive integer v0, the associated sequence evolves by the rule: if vn is even, then vn+1 = vn/2
(type 0 transition); otherwise, vn+1 = (3vn + 1)/2 (type 1 transition). The conjecture asserts that every
such sequence eventually reaches the value 1.

If we consider the set of 2f(N) random transition lists of length N , each encoding a sequence of type 0
and type 1 transitions in the Syracuse process, then the number of initial values v0 < 2n that appear as
minimal values generating one of these lists follows the binomial distribution B(2f(N), 2N−n).

This allows us to bound, using the Central Limit Theorem or the Berry–Esseen inequality, the number
of initial values below 2n that appear as minimal initial values associated with transition lists in the sample.

We introduce the concept of the set Up(N, v0), consisting of transition lists for which v0 is minimal among
the first N elements. By studying this set and using the fact that growth remains naturally bounded beyond
the first p > 100 terms, we show that the cardinality of admissible transition lists is provably insufficient to
contradict the conjecture.

Our method is purely discrete and combinatorial, deliberately avoiding classical analytic or ergodic
techniques.

1 Introduction

The Syracuse conjecture—also known as the Collatz conjecture or the 3x + 1 problem—is one of the most
well-known unsolved problems in mathematics. Its formulation is deceptively simple: starting from any
positive integer v0, one defines a sequence by the recursive rule

vn+1 =

{
vn/2, if vn is even (type 0 transition);

(3vn + 1)/2, if vn is odd (type 1 transition).

The conjecture states that every such sequence eventually reaches the value 1. Despite its apparent simplicity
and extensive computational verification, a general proof has remained elusive.

In this paper, we introduce a rigorous combinatorial model of the Syracuse conjecture, grounded in basic
statistical principles. The approach is based on analyzing how initial values v0 are distributed within large
sets of transition lists.

Section 2 introduces the classical Syracuse sequence, its reduced form, and an approximate variant v′n in
which the constant +1 is omitted in the odd case. We also define the transition list L(N,m, d)—encoding
the parity transitions occurring in the Syracuse sequence— and establish a partial order over such lists.

In Section 3, we prove that the number of initial values v0 < 2n that appear as minimal values generating
one of the 2f(N) random transition lists of length N—each encoding a sequence of type 0 and type 1
transitions in the Syracuse process—follows the binomial distribution B(2f(N), 2N−n).

In Section 4, we present the central result—the Random List Theorem—which allows us to bound the
number of initial values below 2n that occur as minimal values generating a given transition list in the
sample. Two classical methods are employed to estimate the number of minimal initial values: on the one
hand, the Central Limit Theorem, which is effective with moderate sample sizes; on the other hand, the
Berry–Esseen inequality, which requires significantly larger sets but has the important advantage of enabling
a fully formalized proof within a proof assistant.

Section 5 develops a detailed analysis of the approximate sequence v′n, quantifying the error term rn =
vn−v′n and showing that the influence of the omitted constant becomes negligible for large v0 and moderate
N .

The following four sections form the core of the proof:
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� Section 6 studies the boundary list Ceil(N), which provides a minimal condition ensuring that the
approximate sequence v′n is strictly increasing.

� Section 7 focuses on the minimal list JGL(N, v0) in the partial order, guaranteeing growth for the
actual sequence vn. Under suitable conditions, this list coincides with Ceil(N).

� Section 8 introduces the filtered list JGL2p(N, v0), which ensures that the first p > 100 values of the
sequence satisfy vn > v0/2

2p, a key constraint for bounding type 1 transitions.

� Finally, Section 9 synthesizes these tools to complete the proof. By counting the number of lists above
JGL2p and applying the Random List Theorem, we derive a contradiction, thereby completing the
proof of the conjecture.

In summary, this work offers not only a complete combinatorial proof of the Syracuse conjecture, but
also a general methodological framework for approaching related deterministic problems via discrete and
statistical techniques.

Beyond the specific case of the 3n + 1 rule, our method extends naturally to variants such as 3n + b,
divergent rules like 5n + 1, and other recent conjectures (see arXiv:2107.11160 [5]). These extensions are
explored in additional documents (see [1],[2]).

The method developed here is deliberately elementary: it avoids ergodic theory, analytic tools, and
arithmetic geometry. Instead, it demonstrates how a purely combinatorial and discrete perspective can lead
to a complete and rigorous proof. While it does not aim to rival deep analytic results—such as those of
Terence Tao [9]—it highlights the power of structural reasoning in tackling complex dynamical problems.
This approach complements analytical techniques and opens new directions for combinatorial insight into
the Syracuse problem.

An interactive platform allowing exploration of the numerical properties discussed in this paper is avail-
able online (see [3]), although it plays no role in the proofs themselves.

2 Definitions

This section introduces the key definitions that will be used throughout the paper. It provides a reference
framework for the construction and proof of the main result.

2.1 Standard Syracuse Sequence: (un)

The standard Syracuse sequence (un) is defined for any initial value u0 > 0 by the recurrence:

un+1 =


un

2
, if un is even (type 0 transition),

3un + 1, if un is odd (type 1 transition).

Remarque 2.1. The type of each transition depends on the parity of un, which is given by its least
significant bit (bit 0).

2.2 Reduced Syracuse Sequence: (vn)

Since any odd value un is followed by an even un+1, it is natural to compose two consecutive steps into one.
This leads to the definition of a reduced sequence (vn), which simplifies the analysis:

vn+1 =


vn
2
, if vn is even (type 0),

3vn + 1

2
, if vn is odd (type 1),

with v0 > 0.

Remarque 2.2. The parity of vn still determines the type of transition. While the sequence could be
written as vn = T (n)(v0), we retain the recurrence form for clarity.

2.3 Transition List L(N,m, d)

A transition list of length N is a sequence of N transition types ti ∈ {0, 1}, representing type 0 and type 1
transitions, respectively. It is denoted:

L(N,m, d) = (t0, t1, . . . , tN−1),

where m is the number of type 1 transitions, and d = N −m is the number of type 0 transitions.

� m: total number of type 1 transitions (multiplications);

� d: number of type 0 transitions (divisions by 2 );

� N = m+ d: total length of the transition list.
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For each prefix of the list of length n ≤ N , we define:

� mn =
∑n−1

i=0 ⊮{ti=1}, the number of type 1 transitions among the first n elements;

� dn = n−mn, the number of type 0 transitions among the first n elements.

Exemple 2.3. For v0 = 7, the sequence is:

7
1−→ 11

1−→ 17
1−→ 26

0−→ 13.

Then: L(4, 3, 1) = (1, 1, 1, 0).

Remarque 2.4. The list L(N,m, d) is also called a parity vector, since each ti corresponds to the least
significant bit of vi.

2.4 Partial Order on Transition Lists

We define a partial order ≼ on transition lists of length N by comparing the cumulative number of type 1
transitions at each prefix of the list.

Let L1 and L2 be two transition lists of length N . We write:

L1 ≼ L2 if and only if for all 0 ≤ n ≤ N, mn,L1 ≤ mn,L2 ,

where mn,L denotes the number of type 1 transitions among the first n elements of list L.
This relation is a partial order: it satisfies reflexivity, antisymmetry, and transitivity.
We also define the associated strict order:

L1 ≺ L2 if and only if for all 0 ≤ n ≤ N, mn,L1 < mn,L2 .

Remarque 2.5. This is not a total order. There may exist two lists L1 and L2 such that neither L1 ≼ L2

nor L2 ≼ L1 holds. In such cases, the lists are said to be incomparable under this relation. This situation
arises when the distribution of type 1 transitions differs in position but not in number.

Exemple 2.6. Let L1 = (1, 0, 1) and L2 = (0, 1, 1). The cumulative sums of type 1 transitions yield:

(m1,m2,m3) = (1, 1, 2) for L1, and (0, 1, 2) for L2.

Thus, neither L1 ≼ L2 nor L2 ≼ L1 holds: the lists are incomparable.

Remarque 2.7 (Interpretation). This order reflects the temporal positioning of type 1 transitions: a list
that accumulates multiplications more slowly (i.e., later in the sequence) is considered ”smaller” in this
ordering.

2.5 Solutions of a Transition List

We say that the initial or starting value v0

� follows the transition list LN ,

� realizes the transition list LN ,

� or is a solution of the transition list LN ,

if and only if the first N transitions of the reduced Syracuse sequence starting from v0 are exactly those
specified by LN .

We say that v0 is the minimal solution of LN if v0 < 2N . The existence of such a solution will be
established in Section 3.4.

2.6 Approximate Reduced Syracuse Sequence: (v′n)

We now introduce an approximate version of the reduced Syracuse sequence by neglecting the constant term
in the type 1 transition. Specifically, in place of the expression 3vn +1, we consider only 3vn. The resulting
sequence (v′n) is defined by the recurrence:

v′n+1 =


v′n
2
, if vn is even (type 0),

3v′n
2

, if vn is odd (type 1),

with v′0 = v0.

Remarque 2.8. This approximation is especially meaningful when the initial value v0 is large and the
number of steps n remains moderate. Crucially, the transition types of the approximate sequence v′ coincide
exactly with those of the original sequence v, since the parity (and thus the transition vector (ti)) is preserved.

However, the values of v′n may be non-integer, which introduces a discrepancy compared to the actual
sequence. To quantify this difference, we define a correction term rn such that:

vn = v′n + rn.

This decomposition will be used later to precisely analyze the divergence between the exact and approximate
sequences.
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3 Binomial Distribution of Initial Values Below a Threshold

Théorème 3.1 (Binomial Distribution of Minimal Initial Solutions). Let nb ∈ N, and consider a set of
nb independent and distinct transition lists L1, . . . ,Lnb, each of length N . Assume each list L(N,m, d) is
random, with a proportion pL = m/N of type 1 transitions. Let k = N − n and Rk denote the number of
minimal initial solutions v0 < 2n = 2N−k associated with these nb lists.

Then, for any 0 < k < N − 10, the random variable Rk follows the binomial distribution:

Rk ∼ Bin(nb, 1/2k).

The proof of the theorem is broken down into several intermediate results, presented as lemmas in the
following subsections.

3.1 Lemma: the Probability that v1 is even is 1
2
for v0 ≥ 4

Lemme 3.2. Let v0 ≥ 4 be an integer chosen uniformly in the interval [2n, 2n+1) with n ≥ 2. Then the
parity of v1, defined by the reduced Syracuse iteration

v1 =

{
v0/2 if v0 ≡ 0 mod 2,

(3v0 + 1)/2 if v0 ≡ 1 mod 2,

the parity of v1 is uniformly distributed :

P(v1 ≡ 0 mod 2) = P(v1 ≡ 1 mod 2) =
1

2
.

Proof. Let us write the binary decomposition of v0:

v0 =

N∑
p=0

ap · 2p, with ap ∈ {0, 1}.

Case 1: v0 is even (a0 = 0)
Then

v1 =
v0
2

=

N∑
p=1

ap · 2p−1 =

N−1∑
p=0

ap+1 · 2p.

The parity of v1 is given by a1. Since N ≥ 4, the bit a1 exists and is uniformly distributed in {0, 1}:

P(v1 even | v0 even) = P(a1 = 0) =
1

2
.

Case 2: v0 is odd (a0 = 1)
We have:

v1 =
3v0 + 1

2
=

1 + v0 + 2v0
2

.

Replacing v0 by its binary expansion:

v1 =
1 +

∑N
p=0 ap · 2p +

∑N
p=0 ap · 2p+1

2
=

N+1∑
p=0

a′
p · 2p.

The least significant bit a′
0 depends on:

a′
0 = (1 + a0 + a1) mod 2 = (1 + 1 + a1) mod 2 = a1.

As in the even case, the parity of v1 is determined by a1, which is uniformly random. Hence:

P(v1 even | v0 odd) = P(a1 = 0) =
1

2
.

Remarque 3.3. This lemma shows that the parity of v1 is exactly balanced as soon as v0 ≥ 4, i.e., when
the binary representation of v0 has at least two digits. This is an exact property, not an asymptotic estimate.

Some sources incorrectly state that this equiprobability only holds “in sufficiently large intervals.” For
instance, the May 2025 version of the French Wikipedia article on the Syracuse conjecture claims:

“the parity of the result is independent of that of v, if v is randomly chosen in a sufficiently large
interval.”

However, as the above proof shows, the property already holds perfectly for all v0 ≥ 4, without any asymp-
totic assumption.

It is also important to note that this equiprobability cannot be extended to subsequent values vn, since
the trajectory is deterministically correlated with v0. Assuming independence along the entire sequence is a
common error in probabilistic models of the Syracuse dynamics. While the lemma justifies local randomness
at the first step, caution is required when extending this reasoning to full orbits.
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3.2 Lemma: Bijection between Transition Lists of Length N and Minimal
Initial Values v0 < 2N That Realize Them

Lemme 3.4. For every integer N ≥ 1, there is a bijection between:

� the set LN of binary transition lists (t0, . . . , tN−1) ∈ {0, 1}N ;

� and the set of initial values v0 < 2N so that the sequence (v1, . . . , vN ) generated by the reduced Syracuse
iteration follows the transition pattern (t0, . . . , tN−1).

Each transition list uniquely determines a minimal initial value v0 < 2N that realizes it. Furthermore, all
other values generating the same transition list are of the form:

v
(n)
0 = v0 + n · 2N , n ∈ N.

Remarque 3.5. This relies on extending the definition to include v0 = 0, which is then considered as the
minimal solution for all transition lists containing exactly N transitions of type 0 (and no transitions of
type 1), instead of assigning v0 = 2N .

Proof. The reduced Syracuse dynamics assigns to any integer v0 a transition list (t0, . . . , tN−1) defined by:

ti =

{
0 if vi is even,

1 if vi is odd,

where vi+1 = T (vi) with T the reduced Syracuse function.
We prove by induction on N that for each binary word of length N , there exists a unique minimal

v0 < 2N realizing it.

Base case N = 1 There are two possible transition lists:

� t0 = 0 (even), realized by v0 = 0 (with the extension);

� t0 = 1 (odd), realized by v0 = 1.

Each transition bit is thus realized by a unique v0 < 2.

Inductive step Assume the result holds for lists of length N : for every LN = (t0, . . . , tN−1), there exists
a unique minimal value s0 < 2N realizing it.

Let LN+1 = (t0, . . . , tN ) be a list of length N + 1.
By the inductive hypothesis, the prefix (t0, . . . , tN−1) corresponds to a unique value s0 < 2N . Consider

the two candidate initial values:
v
(0)
0 = s0, v

(1)
0 = s0 + 2N .

Both share the same lower N bits and thus follow the same first N transitions. Let m be the number of
type 1 transitions among (t0, . . . , tN−1). Then, by recurrence1, their corresponding values at time N differ
by 3m:

v
(a)
N = sN + a · 3m.

We now determine which of the two values v
(a)
0 satisfies tN , by testing the parity of v

(a)
N :

� If sN ≡ tN (mod 2), choose a = 0;

� Otherwise, choose a = 1.

Thus, exactly one of the two values v
(0)
0 or v

(1)
0 matches the full transition list LN+1, and its value is

strictly less than 2N+1.

1Let us detail the first transition:
The value v

(a)
0 has the same parity as s0, corresponding to t0 ∈ {0, 1}.

� If t0 = 0, then s0 is even (since s0 follows LN ), and

v
(a)
1 =

v
(a)
0

2
=

s0 + a · 2N

2
=

s0

2
+ a · 2N−1 = s1 + a · 2N−1.

� If t0 = 1, then s0 is odd (since s0 follows LN ), and

v
(a)
1 =

3v
(a)
0 + 1

2
=

3(s0 + a · 2N ) + 1

2
=

3s0 + 1

2
+

a · 3 · 2N−1

2
= s1 + a · 3 · 2N−1.

The value v
(a)
1 has the same parity as s1, which corresponds to t1.

One can easily prove by induction that, for all 0 ≤ n ≤ N ,

v
(a)
n = sn + a · 3mn · 2N−n,

where mn denotes the number of type 1 transitions among the first n transitions of LN .
and for n = N :

v
(a)
N = sN + a · 3m.

5



Infinitely many solutions Since adding 2N does not affect the first N transitions, any integer of the
form:

v
(n)
0 = v0 + n · 2N , n ∈ N,

also realizes the same transition list. Therefore, for each LN , there exists an infinite arithmetic progression
of initial values with a unique minimal representative in [0, 2N ).

Remarque 3.6 (On the precedence of the lemma). In the standard case, this lemma corresponds to results
previously established by Riho Terras (1976) [10] and C. J. Everett (1977) [6], as kindly pointed out to me
by Shalom Eliahou in a personal correspondence dated December 18, 2024.

These references were not identified in earlier versions of this document (prior to version 3.1.2), as the
original articles are written in English and adopt a different formalism.

That said, the main contribution of this section lies in the corollary that follows, which, to the best of
our knowledge, constitutes a new result within the specific framework developed here.

3.3 Corollary of Lemma 3.4: P(v0 < 2N−1) = 1
2
for Transition Lists of

Length N

Corollaire 3.7. Let N ≥ 1. Among all transition lists of length N , the probability that the minimal initial
value v0 satisfies v0 < 2N−1 is exactly

P(v0 < 2N−1) =
1

2
.

Proof. We consider only the minimal initial values v0 < 2N arising from the bijection of Lemma 3.4.
Given a list of length N , the construction extends a prefix of length N − 1 by one final bit tN−1. The

two candidates for v0 are:
v
(0)
0 = s0, v

(1)
0 = s0 + 2N−1.

Only one of these two values satisfies the final transition, depending on the parity of sN−1 and the bit
tN−1. The minimal representative v0 = s0 is selected if and only if:

(tN−1 = 0 and sN−1 is even) or (tN−1 = 1 and sN−1 is odd).

Assuming, as shown in Lemma 3.2, that P(sN−1 even) = 1
2
, and letting p denote the probability that

tN−1 = 1, we compute:

P(v0 = s0) = (1− p) · 1
2
+ p · 1

2
=

1

2
.

Hence, among all transition lists of lengthN , the minimal initial value v0 falls below 2N−1 with probability
exactly

P(v0 < 2N−1) =
1

2
.

3.4 Corollary of Lemma 3.4: P(v0 < 2N−k) = 1
2k

for Transition Lists of
Length N

Corollaire 3.8. Let N ≥ 1 and 0 ≤ k ≤ N . Among all transition lists of length N , the probability that the
associated minimal initial value satisfies v0 < 2N−k is exactly

P(v0 < 2N−k) =
1

2k
.

Proof. By iterating the reasoning of Corollary 3.7 k times, we observe that each additional transition bit
splits the space of minimal initial values in half. Starting from the full interval [0, 2N ), the probability that
a randomly constructed list yields a minimal v0 below 2N−k is thus

P(v0 < 2N−k) =
1

2k
.

This also yields the following consequences:

� The probability that v0 falls in the interval [2N−k, 2N−k+1) is likewise 1
2k

;

� By complement, the probability that v0 ≥ 2N−k is 1− 1
2k

.

Finally, to have a nonzero expected number of minimal values v0 < 2N−k in a sample of n0 = 2f(N)

transition lists, we require:
2f(N)

2k
> 1 if and only if k < f(N).

This inequality gives a critical threshold beyond which the probability of sampling such a value becomes
negligible.
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Remarque 3.9. This exact power distribution is crucial in establishing bounds that scale logarithmically
with N in the Random List Theorem. It reflects the uniform binary structure induced by the bijection of
Lemma 3.4.

3.5 Iterated Binomial Reduction

Lemme 3.10 (Iterated Binomial Reduction). Let nb ∈ N, and define a sequence of random variables (Rk)k≥0

recursively by:
R0 = nb, and Rk ∼ Bin(Rk−1, 1/2) for all k ≥ 1.

Then, for every k ∈ N, the random variable Rk follows the binomial distribution:

Rk ∼ Bin

(
nb,

1

2k

)
.

Proof. We proceed by induction on k.

Base case: for k = 0, we have R0 = nb, which is equivalent to R0 ∼ Bin(nb, 1), i.e., R0 ∼ Bin(nb, 1/20).

Inductive step: suppose that for some k ≥ 0, we have

Rk ∼ Bin

(
nb,

1

2k

)
.

Then, conditionally on Rk = r, the next variable satisfies

Rk+1 | Rk = r ∼ Bin(r, 1/2).

Thus, we can write:

Rk+1 =

Rk∑
i=1

Yi,

where the Yi are independent Bernoulli(1/2) variables, independent of Rk.
Since Rk ∼ Bin(nb, 1/2k), we can express:

Rk =

nb∑
i=1

Xi, where Xi ∼ Bernoulli(1/2k),

and the Xi are independent.
Each Xi = 1 indicates that the i-th item survived the first k filtering steps. For Rk+1, we apply one

more independent Bernoulli(1/2) filtering to each Xi = 1.
Therefore, each i ∈ {1, . . . , nb} survives the first k + 1 steps with probability:

P(survival) = 1

2k
· 1
2
=

1

2k+1
.

By independence, we conclude that:

Rk+1 ∼ Bin

(
nb,

1

2k+1

)
.

Conclusion: the result follows by induction: for all k ∈ N,

Rk ∼ Bin

(
nb,

1

2k

)
.

3.6 Proof ot the Theorem

Proof. Each transition list L defines a unique minimal solution v0 < 2N under the convention that v0 = 0
corresponds to the all-zero transition list (see Lemma 3.4).

For each transition tN−k−1 in each list, we consider v0 to be the minimal initial value that solves the
first N − k − 1 transitions.

We know that v0 < 2N−k−1.
Moreover, v0 is also the minimal solution for the first N−k transitions of L if and only if tN−k−1 matches

the ”natural” transition from v0, that is, if

((tN−k−1 = 1) and vN−k−1 is odd) or ((tN−k−1 = 0) and vN−k−1 is even).
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The probability of this event is

pL · 1
2
+ (1− pL) ·

1

2
=

1

2
.

Indeed, if the transition does not match, then the minimal solution for the first N − k transitions of L
would be v0 + 2N−k ≥ 2N−k, and thus no longer strictly below the threshold.

We now prove by induction that Rk ∼ Bin
(
nb, 1

2k

)
.

Base case: For k = 1, we consider the final transition tN−1 of each transition list. Given that the
minimal initial value v0 for the first N − 1 transitions satisfies v0 < 2N−1, the value v0 also solves the full
list of N transitions if and only if tN−1 matches the natural parity transition induced by vN−1. This occurs
with probability 1/2, since the transition is chosen at random and independently of v0, and the parity of
vN−1 is balanced in expectation.

Since the nb transition lists are all distinct and independent, we perform nb independent Bernoulli trials
with success probability 1/2, one for each list. It follows that

R1 ∼ Bin(nb, 1/2).

Inductive step: Assume that Rk−1 ∼ Bin(nb, 1/2k−1).
By iterating the same reasoning at step k, after analyzing the last k − 1 transitions of each list, each

remaining minimal value survives the next transition with probability 1/2, independently. Therefore,

Rk ∼ Bin

(
Rk−1,

1

2

)
.

Then, by applying Lemma 3.10, we deduce that

Rk ∼ Bin

(
nb,

1

2k

)
.

This completes the proof by induction.
Therefore, we conclude that the number of minimal initial solutions strictly less than 2N−k follows the

binomial distribution Bin(nb, 1/2k).

4 Random List Theorem

⌈f(N)⌉

N

With number of lists nb = 2⌈f(N)⌉ (N ; ⌈f(N)⌉)

(N − ⌈f(N)⌉; 0)

Statistic distribution
Upper bound of remaining solutions

Lower bound of remaining solutions

n

log2(v0)

lo
g
2
(s
ol
u
ti
on

s)

Figure 1: Number of solutions v0 < 2n

Remarque 4.1 (Idea). The probability that the minimal initial value v0 of a transition list L(N,m, d)
satisfies v0 < 2n is 2N−n.

If 2f(N) random lists are tested, then we expect

E [#{v0 < 2n}] ≈ 2f(N) · 2n−N = 2e.

Hence, the shift index e provides a direct estimate of the expected number of solutions.

Théorème 4.2 (Random List Theorem). Let a set of nb = 2f(N) transition lists of length N , independently
and randomly generated. Each list L(N,m, d) may contain an arbitrary proportion m/N of type 1 transitions,
without any specific constraint.
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For a given integer n < N , let Rn denote the number of minimal initial values v0 < 2n among the set of
transition lists.

Then Rn follows the binomial distribution:

Rn ∼ Bin

(
2f(N),

1

2N−n

)
.

This distribution follows directly from the independence of the lists and the successive filtering mechanism
applied to the last N − n transitions.

Define:
e := n−N + ⌈f(N)⌉.

(i) Bounds via the Central Limit Theorem.

Let 4 ≤ z ≤ 6 be a real number. Then, with probability at least 1− ε, where ε = e−z2/2:

– if e ≥ 7, then Rn ≥ 64− 8
√
2z,

– if e ≤ 6, then Rn ≤ 64 + 8z.

(ii) Bounds via the Berry–Esseen inequality.

For any ε < 10−3, define:

K :=

⌈
2 · log2

(
0.56

ε

)⌉
+ 1.

Then, with probability at least 1− ε, we have:

– if e > K, then Rn > min := 2K−1 −
√

2 ln(1/ε) ·
√
2K ,

– if e < K, then Rn < max := 2K +
√

2 ln(1/ε) ·
√
2K .

The following values are guaranteed for some standard thresholds:

ε K min max

10−3 20 520,481 1,052,383

10−4 26 33,519,272 67,144,024

10−5 33 4,294,522,559 8,590,379,329

Proof. According to Theorem 3.1, we have

Rn ∼ Bin(nb, 1/2N−n).

(i) Central Limit Theorem approximation:

Let k = N − n, the number of suffix transitions under analysis.

We apply the classical Central Limit Theorem to the sum of nb independent and identically distributed
Bernoulli variables with constant parameter p = 1/2k.

This sum defines the variable Rn, with expected value and standard deviation given by:

µ := E[Rn] = nb · p =
nb

2k
,

σ :=
√

Var(Rn) =
√

nb · p(1− p) =

√
nb

2k

(
1− 1

2k

)
.

As soon as µ = nb
2k

≳ 30, the normal approximation becomes accurate in practice. Asymptotically, we
have convergence in distribution:

Zn :=
Rn − µ

σ

D−−−−→
nb→∞

N (0, 1).

We now derive probabilistic bounds for Rn using a Gaussian tail threshold z > 0.

– Upper bound (tail on the right):

P(Zn < z) > 1− ε whenever Rn < µ+ z · σ, with ε := 1− Φ(z).

We bound successively:

Rn <
nb

2k
+ z ·

√
nb

2k

(
1− 1

2k

)
<

nb

2k
+ z ·

√
nb

2k
.

Now suppose nb = 2f(N) ≤ 2⌈f(N)⌉. Then,

Rn <
2⌈f(N)⌉

2k
+ z ·

√
2⌈f(N)⌉

2k
.

9



Define e := n−N + ⌈f(N)⌉. Then e ≤ 6 is equivalent to k ≥ ⌈f(N)⌉ − 6. Since Rn is decreasing
in k, the upper bound is maximal when k = ⌈f(N)⌉ − 6. Therefore:

if e ≤ 6 thenRn < 64 + 8z.

– Lower bound (tail on the left):
Using the Central Limit Theorem, for any z > 0, we have:

P(Zn > z) > 1− ε whenever Rn > µ− z · σ, with ε := 1− Φ(z).

We start from the inequality:

Rn >
nb

2k
− z ·

√
nb

2k

(
1− 1

2k

)
>

nb

2k−1
− z ·

√
nb

2k−1
.

Now suppose nb = 2f(N) ≥ 2⌈f(N)⌉−1. Then:

Rn >
2⌈f(N)⌉−1

2k
− z ·

√
2⌈f(N)⌉

2k
.

Define e := n−N + ⌈f(N)⌉. Then e ≥ 7 is equivalent to k ≤ ⌈f(N)⌉ − 7.
Since Rn is decreasing in k, the lower bound is minimal when k = ⌈f(N)⌉ − 7. Therefore:

if e ≥ 7 thenRn > 64− 8
√
2z.

Numerical remark: For z ≥ 4, the Mills ratio gives z ≈
√

2 ln(1/ε), hence ε ≈ e−z2/2.

(ii) Approximation with Berry–Esseen Inequality:

– Berry–Esseen Inequality
We apply the Berry–Esseen inequality to the centered and normalized variable

Zn :=
Rn − nb · p√
nb · p(1− p)

,

where Rn denotes the number of minimal initial values below 2n among a large set of nb = 2f(N)

transition lists of length N . Although the process is fundamentally deterministic, the distribution
of Rn can be approximated by that of a binomial variable Bin(nb, p), with p = 1/2N−n, based on
probabilistic modeling of parity transitions.
This allows us to apply the standard form of the Berry–Esseen inequality, which quantifies
the convergence to the normal distribution for sums of independent and identically distributed
Bernoulli(p) variables.
The third absolute centered moment of a Bernoulli variable is given by

ρ = E[|X − p|3] = p(1− p)3 + (1− p)p3 = p(1− p)(1− 2p+ 2p2),

which is finite for any fixed p ∈ (0, 1). The variance is σ2 = p(1 − p), and the Berry–Esseen
inequality yields:

|P(Zn ≤ z)− Φ(z)| ≤ C · ρ
σ3

√
nb

=
C · (1− 2p+ 2p2)

(p(1− p))1/2 ·
√
nb

=
Cp√
nb

,

with C ≤ 0.56 an absolute constant.
Let

Cp :=
C · (1− 2p+ 2p2)

(p(1− p))1/2
,

which depends only on p. This formulation enables us to derive explicit quantitative bounds
for the probability that Rn deviates from its expectation, using Gaussian approximations with
computable error margins.

– Getting the threshold
We aim to ensure that P(Zk < z) > 1 − ε, and we seek to determine for which values of nb this
inequality holds.
Approximating the Gaussian tail for large z using the classical Mills ratio :

1− Φ(z) ≈ 1

z
√
2π

e−z2/2,

10



we substitute z :=
√

2 ln(1/ε), which yields:

1− Φ(z) ≈ ε√
4π ln(1/ε)

.

According to the Berry–Esseen inequality:

P(Zk < z) ≥ Φ(z)− Cp√
nb

.

Therefore, we require:

Φ(z)− Cp√
nb

> 1− ε.

By substituting the approximation for Φ(z), we obtain:

ε√
4π ln(1/ε)

+
Cp√
nb

< ε.

To simplify, note that for small ε, we have ln(1/ε) ≫ 1, so ε√
4π ln(1/ε)

≪ ε. Therefore, this term

becomes negligible, and we may approximate the condition by:

Cp√
nb

< ε, which implies nb >

(
Cp

ε

)2

.

For largeN−n (i.e., when we filter over a large number of final transitions), we have p = 1/2N−n ≪
1, and the constant becomes:

Cp =
C · (1− 2p+ 2p2)√

p(1− p)
≈ C

√
p
.

Substituting this into the bound yields the condition:

nb >

(
C

ε

)2

· 2N−n.

Taking logarithms (base 2), we obtain:

log2(nb) > 2 log2

(
C

ε

)
+ (N − n).

Let us define nb = 2f(N). Then the inequality becomes:

f(N) > 2 log2

(
C

ε

)
+ (N − n).

This is satisfied as soon as

⌈f(N)⌉ − 1 ≥
⌈
2 log2

(
C

ε

)⌉
+ (N − n).

Let us define the threshold:

K :=

⌈
2 log2

(
C

ε

)⌉
+ 1, and let e := n−N + ⌈f(N)⌉.

Then the condition becomes simply:
e ≥ K.

– Upper bound (tail on the right): By applying the Berry–Esseen inequality at depth nK =
N − ⌈f(N)⌉+K (i.e., when e = K), we obtain:

P(ZnK ≤ z) ≥ 1− ε, with z =
√

2 ln(1/ε).

Since ZnK =
RnK + µ

σ
, this implies:

RnK < µ+ z · σ, with probability at least 1− ε,

where

µ = E[RnK ] =
nb

2N−nK
=

2f(N)

2⌈f(N)⌉−K
≤ 2K ,

11



and

σ =
√

Var(RnK ) =

√
µ

(
1− 1

2N−nK

)
<

√
µ ≤

√
2K .

Therefore, with probability at least 1− ε, we have:

RnK < 2K + z ·
√
2K .

Finally, since Rn ≤ RnK for all e ≤ K i.e. n ≤ nK (as the sequence Rk is increasing in k), the
upper bound on RnK also applies to Rn.

if e ≤ K thenRn < 2K + z ·
√
2K .

– Lower bound (tail on the left):
Since

|P(Zn ≤ z)− Φ(z)| = |P(Zn ≥ −z)− Φ(−z)| ,
we may reuse the previous estimates in the opposite tail.
By applying the Berry–Esseen inequality at depth nK = N − ⌈f(N)⌉+K (i.e., when e = K), we
obtain:

P(ZnK ≥ −z) ≥ 1− ε, with z =
√

2 ln(1/ε).

Since ZnK =
RnK − µ

σ
, this implies:

RnK > µ− z · σ, with probability at least 1− ε,

where

µ = E[RnK ] =
nb

2N−nK
=

2f(N)

2⌈f(N)⌉−K
≥ 2K−1,

and

σ =
√

Var(RnK ) =

√
µ

(
1− 1

2N−nK

)
<

√
µ ≤

√
2K .

Therefore, with probability at least 1− ε, we have:

RnK > 2K−1 − z ·
√
2K .

Finally, since Rn ≥ RnK for all e ≥ K i.e. n ≥ nK (as the sequence Rk is increasing in k), the
lower bound on RnK also applies to Rn.

if e ≥ K thenRn > 2K−1 − z ·
√
2K .

Remarque 4.3 (Random List Theorem for Non-Random Sets of Transition Lists).

Conclusion. For sets of transition lists delimited by suitable boundaries, the Random List Theorem can
be applied without any special modification.

In the proofs, we would like to apply the Random List Theorem to sets of transition lists that are neither
random nor independent.

If one were to apply the theorem to the entire set of 2N transition lists of length N , then for every
0 < n ≤ N we would obtain Rn = 2N−n by the bijection (see 3.4), and nothing would be random. The
difficulty is that if one considers an arbitrary subset of transition lists, without any specific structural
property, the extreme cases cannot be excluded, which makes it difficult to draw any meaningful conclusion.

To overcome this difficulty, recall that mn denotes the number of type 1 transitions among the first
n transitions of L. With this notation in place, we shall apply the Random List Theorem to a family of
transition lists L(N,m, d) satisfying the condition

mn ≥ ⌈kn⌉ for all 0 < n ≤ N,

together with either ⌈kN⌉ ≤ m ≤ N or m = ⌈kN⌉, where k = ln(2)/ ln(3), for instance for the list Ceil(N)
that we shall study later in Section 6.

Each such list, as in Figure 2, can be interpreted as a discrete path from (0, 0) to (d,m) consisting of N
elementary steps, where each step is either:

� a horizontal move (type 0 transition), increasing d by 1; or

� a vertical move (type 1 transition), increasing m by 1.

In the diagram above:

� The blue line represents the Ceil boundary (a constraint to be respected);
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Figure 2: Diagram of transition paths relative to the Ceil boundary.

� The green line is a valid transition list, always staying above Ceil;

� The black line is the classical boundary of the Catalan triangle (without the Ceil constraint);

� Green points indicate the endpoints of valid transition lists for N = 15 (only the intersection point
with Ceil(N) when we restrict to m = k ·N);

Note that transition lists passing through the points on the vertical axis (0, n) have the minimal solution
v0 ≥ 2n−1.

The number of lists passing through each point (d,m) is at least on the order of N , which is very large,
except at (0,m) where m is the extremal value of m; in that case, there is only a single list, but its minimal
solution is far too large and does not belong to the set of admissible solutions.

For n = m+ d > 2, at the point (d,m) the probability that vn is even is equal to 1/2.
For the minimal solution v0 of a transition list to be less than 2n−1, and therefore equal to the value

v0 obtained for the restriction to the first n − 1 transitions, it is necessary that the transition tn−1 be the
“natural” transition taking vn−1 to vn.

Conversely, for the minimal solution v0 of a transition list to be greater than 2n−1, and therefore not
equal to the value v0 obtained for the restriction to the first n− 1 transitions, it suffices that the transition
tn−1 is not the natural transition from vn−1 to vn.

� For most points (interior points), such as point 1 with coordinates (3, 11): the lists passing through
point 1 originate either from point 2 or from point 3.

� For points on the boundary that are preceded by a single “East” step, such as point 4 with coordinates
(5, 9): the lists passing through point 4 originate only from point 5.

� In the case where the maximal value of m is taken to be ⌈kN⌉, then for points with maximal ordinate,
such as point 6 with coordinates (2, 10): the lists passing through point 6 originate only from point 7.

In all these situations, a very large number of lists pass through the point, which means that the proba-
bility of vn−1 being even is always 1/2. For the minimal solution v0 of a transition list to satisfy v0 < 2n−1,
it is necessary that the considered transition be the natural one, i.e., that vn−1 is odd at point 2 or even
at point 3. Hence, statistically, there are twice as few lists after accounting for transition tn−1 whose min-
imal solution is less than 2n−1 as there were with minimal solution less than 2n before accounting for this
transition.

Repeating the same reasoning for all the last transitions, we conclude that for these sets of non-random
and non-independent lists, the same result holds as in the random case.

We may note that translating the Ceil boundary horizontally to the right by prefixing it with 2p type 0
transitions does not alter the previous argument.

Under these circumstances, the Random List Theorem can be applied without any special modification.
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Remarque 4.4 (Heuristic Approach to Establishing the Existence of Solutions). Using the Central Limit
Theorem, we observe that in the case e = 6, which is equivalent to N − n = ⌈f(N)⌉ − 6 and hence
2⌈f(N)⌉/2N−n = 64, we obtain:

Rn < 64 + 8z = 96 < 128 = 27 for z = 4.

This indicates that the number of minimal values is almost halved at each step when analyzing the last
N − n transitions. What initially appeared chaotic at the individual level becomes a smooth continuum
when considering the system globally.

Even though there is no rigorous mathematical justification for it, the process being deterministic allows
us to reasonably conjecture that, by adding 7+6=13 more steps (to account for the remaining fluctuations),
we reach Rn−13 = 0, meaning that there are no solutions v0 < 2n−13.

From this, we heuristically infer the following rule:

If e < −7, then Rn = 0 (no solution v0 < 2n) with very high probability.

The probability is increasing as e ≪ −7.
This rule is not mathematically rigorous, but it provides a useful intuition before applying formal rea-

soning with larger residual solutions.

Remarque 4.5. The validity of this estimate relies on the assumption that the sample of transition lists
is drawn uniformly at random. Biases in the selection—such as favoring lists associated with small v0—can
significantly distort the statistical outcome. This has been confirmed by discrepancies observed in numerical
experiments based on non-uniform or partitioned samplings.

Remarque 4.6. In earlier versions of this document (up to version 4.2.1 inclusive), the probabilistic rea-
soning relied on Corollary 3.8, which states that P(v0 < 2N−k) = 1

2k
. To bound the number of values

v0 < 2N−k, denoted by Rk, the last k transitions were considered, and the Central Limit Theorem was used
to estimate the associated binomial distribution at each step.

At each stage, Rk was bounded above and below around the expected proportion, using an interval
centered at n/2 with growing width. This allowed a valid interval to be maintained at each step, but
without control over the global error probability.

The weakness of this approach lies in the fact that extreme cases (beyond a certain number of standard
deviations) were not taken into account. The assumption that Rk could not fall outside this interval relied
on the idea that extreme cases could not occur, due to the underlying process being deterministic rather
than purely random — a mathematically incorrect reasoning.

Indeed, if one fixes a threshold zk = 4, corresponding to a local error εk ≈ 3.35 × 10−4, then the
probability that at least one of the k steps falls outside the interval is bounded above by kεk (since the
probability of a union is less than the sum of individual probabilities). For significant values of k (as used
in the proof with α = 20, cα = 285, p = 100, giving k = cα · α− (cα + p) = 285× 20− (285 + 100) = 5580),
this leads to a global error greater than 1, rendering the argument invalid.

In the current version, this mistake is addressed by consolidating the k steps into a single argument,
relying on the fact that Rk ∼ Bin

(
nb, 1

2k

)
(see Theorem 3.1).

Remarque 4.7 (Comparison between the asymptotic (Central Limit Theorem) and rigorous (Berry–Esseen)
approaches). In informal reasoning, it is common to apply the Central Limit Theorem (CLT) to approximate
a binomial distribution by a normal distribution as soon as the condition

nb · p ≳ 30

is met. In our context, this allows filtering up to N − n = f − 6 when nb = 2f , leaving only

Rf−6 ≈ 26 = 64

residual elements to analyze.
However, this approximation relies on asymptotic convergence without any explicit error bound. It is

therefore not directly usable in a formal proof system such as Coq or Lean.
In contrast, the Berry–Esseen inequality provides a fully explicit bound on the deviation from the normal

distribution. When applied with ε = 10−3, it restricts the filtering depth to

N − n = f − 20,

leaving a much larger number of residual elements:

Rf−20 ≈ 220 ≈ 106.

This loss of efficiency is the price to pay for obtaining a **rigorous and formally justifiable** upper bound
on the error probability, which is essential for formal verification.

Summary : the CLT provides sharper bounds but is not formally provable; Berry–Esseen is more conservative
but suitable for rigorous proofs.
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5 The Approximate Reduced Syracuse Sequence: (v′n)

We consider an approximate version of the reduced Syracuse sequence, where the term 3vn + 1 is replaced
with 3vn. This approximation is intuitively justified when v0 is sufficiently large and n remains moderate,
in which case the additive term +1 becomes negligible compared to the dominant multiplication by 3.

We construct a sequence (v′n) that reproduces the same transition types (even or odd) as the exact
sequence (vn)n≥0. It is defined by:

v′0 = v0 > 0,

v′n+1 =
v′n
2

if vn is even (type 0 transition),

v′n+1 =
3v′n
2

if vn is odd (type 1 transition).

Note that the elements of the approximate sequence (v′n) are generally not integers.

5.1 Decomposition of vn in Terms of v′n and a Rational Residue

Proposition 5.1. For all n ≥ 0, there exists a rational number rn ∈ Q such that

vn = v′n + rn.

Proof. The proposition holds at n = 0 with r0 = 0.
Assume it holds for some n ≥ 0: vn = v′n + rn. We prove it holds at n+ 1:

� If vn is even:

vn+1 =
vn
2

=
v′n + rn

2
=

v′n
2

+
rn
2

= v′n+1 +
rn
2
.

So rn+1 = rn
2
.

� If vn is odd:

vn+1 =
3vn + 1

2
=

3(v′n + rn) + 1

2
=

3v′n
2

+
3rn + 1

2
= v′n+1 +

3rn + 1

2
.

So rn+1 = 3rn+1
2

.

By induction, the proposition holds for all n ≥ 0.

Remarque 5.2. The sequence (rn) can be defined recursively based on the transition types of (vn):
r0 = 0

rn+1 =
rn
2

if vn is even

rn+1 =
3rn + 1

2
if vn is odd

Note that the recurrence relation for (rn) depends only on the parity pattern of (vn) (i.e., the transition
list), and not on the actual values of (v′n) or the initial value v0. It acts as a rational ”residue” that encodes
the discrepancy and allows reconstruction of the exact sequence (vn) from its approximation (v′n).

In particular, rn ≥ 0 for all n ≥ 0.

Remarque 5.3. The sequence (rn) remains small compared to (v′n) when v0 is large and n is moderate,
justifying the approximation vn ≈ v′n. This observation will be quantified in the next section to control the
error term in applications of the approximate model.

5.2 Explicit Expression of vn in Terms of v0 and rn

Proposition 5.4. Let L(N,m, d) = (t0, . . . , tN−1) be a transition list of length N , and let mn denote the
number of type 1 transitions among its first n entries. Then for all 0 ≤ n ≤ N , we have:

vn =
3mn

2n
v0 + rn,

where (rn) is the sequence defined in Proposition 5.1.

Proof. We recall that v′n evolves under multiplicative factors of 1/2 and 3/2, depending on the transitions.
After mn type 1 transitions and (n−mn) type 0 transitions, we have:

v′n =

(
3

2

)mn
(
1

2

)n−mn

v0 =
3mn

2n
v0.

Using vn = v′n + rn, the result follows.
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Remarque 5.5. This decomposition highlights a multiplicative factor 3m/2N depending only on the global
structure of the transition list L(N,m, d), and a residue rN depending solely on the positions of the type 1
transitions—not on the initial value v0.

This is a key step toward applying the Random List Theorem discussed in Section 4.

5.3 Closed-Form Expression for rn Based on Transitions

Théorème 5.6. Let L(N,m, d) be a transition list of length N . For any 0 ≤ n ≤ N , let mn denote the
number of type 1 transitions among the first n elements, and let ind(i) denote the index (starting from 0) of
the ith type 1 transition in the list. Then:

� If mn = 0, then rn = 0.

� If mn > 0, then:

rn =
3mn

2n

mn∑
i=1

2ind(i)

3i
.

Proof. We proceed by induction on n.
Base case: n = 1

� For L = (0), m1 = 0 and r1 = 0, so the formula holds (empty sum).

� For L = (1), m1 = 1, ind(1) = 0:

r1 =
31

21
· 2

0

31
=

1

2
.

which matches the closed-form expression for r1.

Induction step: Assume the formula holds at rank n. We show it holds at n+ 1:

� If tn = 0, then mn+1 = mn, and:

rn+1 =
rn
2

=
3mn

2n+1

mn∑
i=1

2ind(i)

3i
.

� If tn = 1, then mn+1 = mn + 1, and:

rn+1 =
3rn + 1

2
.

Substituting rn:

rn+1 =
1

2n+1

(
3 ·

mn∑
i=1

3mn−i · 2ind(i) + 2n
)
,

=
1

2n+1

(
mn∑
i=1

3mn+1−i · 2ind(i) + 30 · 2n
)
,

=
1

2n+1

mn+1∑
i=1

3mn+1−i · 2ind(i).

Thus, the formula holds at n+ 1.

5.4 Effect of the Order of Type 0 Transitions on the Growth of rn
Proposition 5.7. Among all transition lists L(N,m, d) with m type 1 and d type 0 transitions, the final
residue rN satisfies:

� rN is minimal when all type 1 transitions occur first (denoted LRmin),

� rN is maximal when all type 0 transitions occur first (denoted LRmax).

In particular:

rmin
N =

3m

2N
− 1

2d
, rmax

N =

(
3

2

)m

− 1.

Proof. From Theorem 5.6, we write:

rN =
3m

2N

m∑
i=1

2ind(i)

3i
.

Shifting a type 0 transition earlier increases some indices ind(i) without decreasing any. Since x 7→ 2x is
strictly increasing, rN increases accordingly.

Minimum: all type 1 transitions first:

ind(i) = i− 1, for 1 ≤ i ≤ m.
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rmin
N =

3m

2N

m∑
i=1

2i−1

3i
=

3m

2N
·

m∑
i=1

(
2

3

)i−1

· 1
3
=

3m

2N
·

(
1−

(
2
3

)m
1− 2

3

)
· 1
3
.

=
3m

2N
− 1

2d
.

Maximum: all type 0 transitions first:

ind(i) = d+ i− 1.

We factor out the 2d term:

rmax
N =

3m

2N

m∑
i=1

2d+i−1

3i
=

2d · 3m

2N

m∑
i=1

2i−1

3i
.

This sum is the same geometric series as above, hence:

rmax
N =

2d · 3m

2N

(
1−

(
2

3

)m)
=

(
3

2

)m

− 1.

Remarque 5.8. The order of type 0 transitions can exponentially influence the residue rN . Between the
two extreme configurations:

rmax
N

rmin
N

≈ 2d.

This justifies focusing on subsets of transition lists where the residue rN remains uniformly bounded. Such
control is essential when comparing the exact trajectory (vn) to its approximation (v′n).

5.5 Final Residue for a Concatenation of Transition Lists

In this section, we study how the final residue R0 = rN0 evolves when the transition list L0 = L(N0,m0, d0)
is obtained by concatenating a collection of sublists L1, . . . ,Ln.

For each k = 1, . . . , n, we define:

� Lk = L(Nk,mk, dk): a transition list of length Nk = mk + dk,

� Fk =
3mk

2Nk
: the multiplicative factor associated with Lk,

� Rk = rNk : the rational residue associated with Lk,

� fk =
∏k

i=1

1

Fi
: the reciprocal product of the Fi up to index k.

We recall from Proposition 5.4 that the final value of a block of transitions satisfies:

v(Nk,Lk) = Fk · v(0,Lk) +Rk.

Proposition 5.9 (Concatenation formula for residues). Let L0 = L1 + L2 + · · · + Ln be the successive
concatenation of the lists Lk. Then the final residue R0 associated with L0 satisfies:

R0 = F0 ·
n∑

k=1

fkRk, where F0 =
n∏

k=1

Fk =
3m0

2N0
.

Proof. We prove the result by induction on the number n of concatenated blocks.
Base case: n = 2 Let L0 = L1 + L2. From Proposition 5.4, we have:

v(N2,L2) = F2 · v(0,L2) +R2, and v(0,L2) = v(N1,L1) = F1 · v(0,L1) +R1.

Therefore:
v(N0,L0) = F2(F1v0 +R1) +R2

= F0v0 + F2R1 +R2,

so R0 = F2R1 +R2 = F0(f1R1 + f2R2).

The general case follows by iterating this recurrence.

Corollaire 5.10 (Repeated iterations of a fixed block). If L0 = n · L1 (concatenation of n identical copies
of L1), then the total residue is given by:

R0 = R1 ·
n−1∑
k=0

F k
1 = R1 ·

1− Fn
1

1− F1
.
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Proof. This is a special case of Proposition 5.9, where Fk = F1 and Rk = R1 for all k. Hence:

R0 = Fn
1 ·

n∑
k=1

R1

F k
1

= R1 ·
n−1∑
k=0

F k
1 .

Remarque 5.11. If F1 ≈ 1, let F1 = 1− u1 with u1 ≪ 1. Then:

Fn
1 ≈ 1− nu1, so R0 ≈ nR1,

yielding a linear approximation for the total residue.

Proposition 5.12 (Concatenation with arbitrary multiplicities). Let

L0 =

n∑
k=1

pk · Lk + Ln+1, with pk ∈ N∗.

Then the total residue is given by:

R0 = F0 ·

(
n∑

k=1

Rk∏k
j=1 F

pj
j

·
pk−1∑
i=0

F i
k

)
+Rn+1.

Proof. Expand each block pk · Lk as pk successive copies and apply Corollary 5.10 to each. The total
contribution from block k is scaled by the product of the inverse multiplicative factors from previous blocks.

Remarque 5.13. If each Fk ≈ 1, writing Fk = 1− uk with uk ≪ 1, we obtain the approximation:

R0 ≈ F0 ·
n∑

k=1

pkRk∏k
j=1 F

pj
j

+Rn+1.

In particular, when
∏k

j=1 F
pj
j ≈ 1, this simplifies to:

R0 ≈ F0 ·
n∑

k=1

pkRk +Rn+1.

This quasi-linear behavior of the total residue is a useful heuristic in probabilistic models involving repeated
motifs.

Remarque 5.14. The concatenation formulas derived in this section provide a powerful tool to compute
the residue rN of complex transition lists by decomposing them into elementary blocks. This modularity
will be instrumental in the analysis of filtered or structured transition patterns in subsequent sections.

6 Study of the Transition List Ceil(N)

We focus here on a particular transition list, denoted Ceil(N), defined by a strict control on the proportion
of type 1 transitions.

Définition 6.1. Letmn be the number of type 1 transitions among the first n transitions in a list L(N,m, d).
The list Ceil(N) is defined by the condition:

mn =

⌈
ln 2

ln 3
· n
⌉

for all 0 < n ≤ N.

6.1 Threshold of the Trajectory: vn > v0 for All 0 < n ≤ N

Proposition 6.2. Let (vn) be the Syracuse sequence associated with the list Ceil(N). Then:

vn > v0 for all 0 < n ≤ N.

Proof. By definition of Ceil(N), we have for all n > 0:

mn =

⌈
ln 2

ln 3
· n
⌉
>

ln 2

ln 3
· n.

This implies:
mn · ln 3 > n · ln 2 if and only if 3mn > 2n.

Using Proposition 5.4, we write:

vn =
3mn

2n
· v0 + rn,

with rn ≥ 0. Therefore:
vn > v0,

as required.
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6.2 Characterization of Type 0 Transitions in Ceil(N)

Proposition 6.3. In the list Ceil(N), the transition tn is of type 0 if and only if the factor

Fn =
3mn

2n

satisfies Fn ≥ 2, for all 0 < n ≤ N .

Proof. We analyze the condition Fn ≥ 2:

3mn

2n
≥ 2 if and only if

3mn

2n+1
≥ 1 if and only if mn · ln 3 ≥ (n+ 1) · ln 2.

This is equivalent to:

mn ≥ ln 2

ln 3
· (n+ 1) if and only if mn ≥

⌈
ln 2

ln 3
· (n+ 1)

⌉
= mn+1.

Since the list Ceil(N) satisfies mn ≤ mn+1 by construction, equality must hold: mn = mn+1. Therefore, tn
is a type 0 transition.

Conversely, if tn is of type 0, then mn = mn+1, which implies:

mn ≥
⌈
ln 2

ln 3
· (n+ 1)

⌉
,

and thus:
3mn

2n
≥ 2.

Hence, the equivalence is proved.

6.3 Block Decomposition of Ceil(n)

Lemme 6.4. Let the following constants be given:

� N = 1054,

� a = 484, and p < N,

� L1 = Ceil(N),

� L2 = Ceil(a) followed by a type 0 transition,

� L3 = Ceil(p).

Define, for all 1 ≤ k ≤ n:

qk =

⌈
k(ln 2− lnFa)−

∑k−1
i=1 qi lnFN

lnFN

⌉
,

where Fn = 3mn

2n
with mn =

⌈
ln 2
ln 3

· n
⌉
in the list Ceil(n).

Then, for all n ≥ 1:

Ceil

(
n∑

k=1

qkN+ n(a+ 1) + p

)
=

n∑
k=1

(qkL1 + L2) + L3.

Proof. The proof is by induction on n.

Case n = 1 (with p = 0): We seek the smallest value of q1 such that one of the transitions in the
repeated pattern Ceil(N) reaches the mutation threshold, i.e., becomes a type 0 transition when Fn ≥ 2.

We consider FqN+n = (FN)
q ·Fn, where FN = F1054 ≈ 1.00004. Among all values Fn = 3mn

2n
for 0 ≤ n < N

that are strictly less than 2, the three largest are:

n+ 1 Fn lnFn
ln 2− lnFn

lnFN

485 1.99795657 0.69212494 23.4168
401 1.99378892 0.69003681 71.2504
317 1.98962997 0.68794868 119.0839

19



We observe that F484 ≈ 1.99796 is the largest value strictly below 2, so we set a = 484. Any earlier
transition tb (with b < a) satisfies Fb < Fa and therefore reaches the mutation threshold later.

We now determine the smallest integer q1 such that:

Fq1N+a = (FN)
q1 · Fa ≥ 2,

which leads to:

q1 ≥ ln 2− lnFa

lnFN
so q1 =

⌈
ln 2− lnFa

lnFN

⌉
.

Using the numerical values:

lnFa ≈ 0.69212494,

lnFN ≈ 0.00004365,

so q1 =

⌈
0.693147− 0.69212494

0.00004365

⌉
= 24.

It is important to justify why it is always the transition at position a that mutates first. This follows
from:

� Fa being the largest among the Fn < 2, so (FN)
q · Fa exceeds 2 before any other (FN)

q · Fb;

� and the construction of Ceil(n), which ensures that when multiple transitions simultaneously cross the
threshold, the leftmost one is selected.

Thus, transition ta mutates first, and we have:

Ceil(q1N+ a+ 1) = q1 · Ceil(N) + Ceil(a) + type 0.

For instance, with N = 1054, a = 484, q1 = 24, we obtain:

Ceil(25781) = 24 · Ceil(1054) + Ceil(484) + type 0.

This concludes the first step of the block decomposition.

Case n = 2: After the first mutation at position q1N+ a+ 1, the factor becomes:

F =
Fa

2
· (FN)

q1 .

We want the next mutation to satisfy:

(FN)
q2 · F ≥ 2 so (FN)

q1+q2 · F
2
a

2
≥ 2.

Taking logarithms:

q2 =

⌈
2(ln 2− lnFa)− q1 lnFN

lnFN

⌉
= 23.

Hence, the second mutation occurs at:

(q1 + q2) ·N+ 2(a+ 1),

and the corresponding block decomposition is:

Ceil ((q1 + q2) ·N+ 2(a+ 1)) = q1 · L1 + L2 + q2 · L1 + L2.

In our example: N = 1054, a = 484, q1 = 24, q2 = 23, so:

Ceil(50508) = 24 · Ceil(1054) + Ceil(484) + 0 + 23 · Ceil(1054) + Ceil(484) + 0.

Inductive step: Suppose the decomposition holds up to index n:

Ceil

(
n∑

k=1

qkN+ n(a+ 1)

)
=

n∑
k=1

(qkL1 + L2) .

The residue factor after n steps is:

F =

(
n∏

k=1

(FN)
qk

)
· F

n
a

2n
.

We want the next mutation to satisfy:

F · (FN)
qn+1 · Fa

2
≥ 2,
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so:
n+1∑
k=1

qk lnFN + (n+ 1) lnFa ≥ (n+ 1) ln 2.

Solving gives:

qn+1 =

⌈
(n+ 1)(ln 2− lnFa)−

∑n
k=1 qk lnFN

lnFN

⌉
.

This completes the inductive proof.

Remarque 6.5 (On the choice of N). We choose N = m+ d = 1054, corresponding to (m, d) = (665, 389),
such that:

m

d
=

665

389
≈ 1.70951156 > X :=

ln 2

ln 3− ln 2
≈ 1.70951129.

That is, N provides a rational over-approximation of the constant X.
This choice is not unique; any pair (m, d) yielding m

d
> X suffices to construct a comparable decompo-

sition. We selected N = 1054 for its numerical precision and reasonable block size.

6.4 Bounding rn in the Ceil(N) List

Théorème 6.6. For the transition list Ceil(N), we have:

mn

5
< rn < mn, for all 0 < n < N.

Proof. The proof relies on two complementary arguments depending on the size of N .

1. Direct numerical verification for N ≤ 106 Explicit computation of rn for 0 < n < 106 confirms
the bound numerically. For instance:

r1000000 = 198875.6767 ≈ 0.315 ·m1000000,

which clearly satisfies the inequality.
The entries in the tables below are sorted to highlight:

� Table 1 (bn = rn −mn): most negative additive gaps;

� Table 2 (an = rn/mn): smallest multiplicative coefficients;

� Table 3 (cn = rn/mn): largest multiplicative coefficients.

Table 1: bn Table 2: an Table 3: cn
bn n an n cn n

-0.5 1 0.2404498 780239 0.7213476 301994
-0.75 2 0.2404499 478245 0.7213469 603988
-1.344 5 0.2404504 176251 0.7213466 905982
-1.375 3 0.2404506 956490 0.7213466 125743
-1.562 4 0.2404506 654496 0.7213444 427737
-1.762 8 0.2404508 352502 0.7213442 75235
-2.508 7 0.2404516 830747 0.7213440 729731
-2.672 6 0.2404517 528753 0.7213435 251486
-3.321 10 0.2404522 226759 0.7213428 24727
-3.611 13 0.2404524 705004 0.7213421 553480
-3.688 16 0.2404526 403010 0.7213416 855474

These results confirm that:

0.24 ·mn < rn < 0.72 ·mn so
mn

5
< rn < mn.

2. General asymptotic case for N > 106 We rely on Lemma 6.4 (block decomposition of Ceil(n))
and on residue accumulation formulas from Section 5.5.

Let:

N0 =

n∑
k=1

qk ·N + n(a+ 1) + p,

with its decomposition:

Ceil(N0) =

n∑
k=1

(qk · L1 + L2) + L3,

where:
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� L1 = Ceil(N) is the repeated block,

� L2 = Ceil(a) followed by a type 0 transition,

� L3 = Ceil(p) with p < N .

From the additive residue formula, we approximate:

rN0 ≈ F0 ·

(
2n∑
i=1

piRi

)
+R2n+1,

with typical numerical values:

� R1 = rN ≈ 159.99,

� R2 = ra/2 ≈ 73.62,

� R3 = rp bounded independently of n,

� F1, F2 ≈ 1, so F0 ≈ 1.

Noting that R2 ≈ a+1
N

·R1, we derive:

rN0 ≈ F0 ·

((
n∑

k=1

qk

)
R1 + nR2

)
+R3.

Using the approximation R2 ≈ a+1
N

·R1, we get:

rN0 ≈ F0 ·

((
n∑

k=1

qk + n · a+ 1

N

)
R1

)
+R3 = F0 ·

(
N0 − p

N
·R1

)
+R3.

The error term R3−F0 · p
N
R1 is uniformly bounded (less than 309), and can be neglected asymptotically.

We therefore approximate:

rN0 ≈ F0 ·
N0

N
·R1.

Since m = mn is the total number of type 1 transitions in Ceil(N0) and m1 = 665 is the number of such
transitions in Ceil(N), we also have:

N0

N
=

m

m1
, so rN0 ≈ F0 ·

m

m1
·R1.

Bounding F0: Recall that in the list Ceil(N), we have

m =

⌈
ln 2

ln 3
·N
⌉
, so that F0 =

3m

2N
.

This implies:
ln 2

ln 3
·N < m ≤ ln 2

ln 3
·N + 1.

Hence, there exists a real number ε ∈ (0, 1] such that:

m =
ln 2

ln 3
·N + ε.

We then express F0 as:

F0 =
3m

2N
= 3ε ·

(
3

ln 2
ln 3

2

)N

.

But 3
ln 2
ln 3

2
= eln 2

2
= 1, so this simplifies to:

F0 = 3ε.

Since ε ∈ (0, 1], we conclude:
1 < F0 < 3.
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Final bounding of rn: Since F0 ∈ (1, 3) and R1 ≈ 159.99, we write m = mn for the number of type 1
transitions up to index n, and m1 = 665 for the number of type 1 transitions in L1 = Ceil(N). By the block
structure and the approximation established above:

rn ≈ F0 ·
m

m1
·R1.

Using F0 < 3, we obtain the inequality:

R1

m1
·m < rn < 3 · R1

m1
·m.

Since
R1

m1
≈ 159.99

665
≈ 0.2406,

we deduce:
0.2406 ·m < rn < 0.7218 ·m.

In particular, for all sufficiently large n, this yields the simpler and uniform bound:

mn

5
< rn < mn,

which confirms the claim.

7 Study of the Transition List JGL(N, v0) (Just Greater List)

Objective. Let N ∈ N∗ and v0 ∈ N∗. We are interested in the set Up(N, v0) of transition lists L(N,m, d)
such that v0 is the minimum of the associated orbit:

for all n ∈ [1, N ], vn ≥ v0.

We define JGL(N, v0) as the minimal element of Up(N, v0) with respect to the partial order introduced
in Section 2.4, namely:

L1(N,m1, d1) ≤ L2(N,m2, d2) if and only if

for all n ∈ [0, N ], mn,L1 ≤ mn,L2 .

This minimum exists because Up(N, v0) is finite. It has two principal properties:

� it maximizes rN among all admissible trajectories with v0 as minimum;

� it provides a sharp lower bound on the number of type 1 transitions required.

We show that, for a suitable N depending on v0, one has:

JGL(N, v0) = Ceil(N).

This identity allows us to:

� determine the minimal cycle length in which v0 is a strict minimum;

� bound from below the number of type 1 transitions for any list in Up(N, v0);

� demonstrate the practical relevance of the approximate sequence v′n as a classifier for minimal trajec-
tories.

Definition. The list JGL(N, v0) is a sequence of N transitions t0, t1, . . . , tN−1 satisfying:

� for all n ∈ [1, N ], we have vn ≥ v0, so v0 is the minimum of the trajectory;

� among all such sequences, transitions of type 0 are prioritized so that, at each step n, the ratio vn/v0
is minimized.

We encode JGL(N, v0) as a binary word of length N over {0, 1}, for instance: 1101.

Remarks.

� Knowing JGL(N, v0) determines rN , the associated residue.

� It maximizes rN among all lists such that v0 is the minimal value, since type 1 transitions are deferred
as late as possible (see Section 5.4).

� By construction, it is the minimal element of Up(N, v0) under the transition-order partial order.

23



7.1 Step-by-Step Construction of the List JGL(N, v0)

Assume we know the Syracuse dynamics up to v0 ≤ maxSyr. For v0 > maxSyr, we construct JGL(N, v0) as
follows:

Case N = 1. We require v1 ≥ v0, which is only possible if t0 = 1 (type 1 transition). Then:

v1 =
3v0 + 1

2
=

31

21
v0 + r1, with r1 =

1

2
.

Thus, JGL(1, v0) = 1.

Case N = 2. Try t1 = 0, yielding:

v2 =
v1
2

=
3

4
v0 +

1

4
.

We require v2 ≥ v0 if and only if v0 ≤ 1. Therefore:

� if v0 = 1, then JGL(2, 1) = 10 (trivial cycle);

� otherwise t1 = 1, and we obtain JGL(2, v0) = 11.

Case N = 3. The transition t2 = 0 is admissible since v2 > v0, hence:

v3 =
v2
2

=
32

23
v0 +

5

8
, so JGL(3, v0) = 110.

Case N = 4. Try t3 = 0:

v4 =
v3
2

=
9

16
v0 +

5

16
.

To satisfy v4 ≥ v0, we must have v0 ≤ 5
7
< maxSyr, hence t3 = 1, and:

JGL(4, v0) = 1101.

v0 > 0

Figure 3: Illustration of the compensation by rn of dips of v′n below v0.

General case. Figure 3 shows how even if v′n < v0 temporarily, the additive term rn can compensate for
this dip, allowing vn ≥ v0.

Assume JGL(N, v0) = L(N,m, d) has been constructed. Then:

vN =
3m

2N
v0 + rN .

We test whether tN = 0 is admissible, i.e., whether

vN+1 =
vN
2

≥ v0 if and only if v0 ≤ rN

2− 3m

2N

=: VMax(N).

� If v0 < VMax(N), then tN = 0 is admissible. In that case, JGL(N + 1, v0) ̸= Ceil(N + 1), as the
prioritization of type 0 transitions defers a type 1 that Ceil would apply sooner.

� If v0 > VMax(N), then tN = 1, and JGL(N + 1, v0) = Ceil(N + 1).

� If v0 = VMax(N):

– if N = 1, we recover the trivial cycle;

– otherwise, this defines a non-trivial cycle beginning at v0.
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7.2 Construction Tests for the JGL List

We only report the indices n for which VMax(n) reaches a new maximum (record). These points are critical,
as they indicate where JGL(n, v0) differs from Ceil(n) whenever VMax(n) > v0.

Example test for N = 20,000,000

The maximal difference between the true value rn and the approximated value Fn·
R1

m1
·m is approximately

4942.93, obtained for n = 19999460, but the corresponding value is still relatively small in context:

rn = 9,099,227.8454.

k m d n VMax(n)
n ln 2

ln⌊VMax(n)⌋
1 1 0 1 1 = 20 ∞
2 3 1 4 ≈ 22.202 2

3 5 2 7 ≈ 24.617 1.527

4 17 9 26 ≈ 26.755 3.849

5 29 16 45 ≈ 28.139 5.532

6 41 23 64 ≈ 29.760 6.557

7 94 54 148 ≈ 211.241 13.167

8 147 85 232 ≈ 212.247 18.943

9 200 116 316 ≈ 213.178 23.980

10 253 147 400 ≈ 214.257 28.056

11 306 178 484 ≈ 216.137 29.993

12 971 567 1538 ≈ 217.865 86.092

13 1636 956 2592 ≈ 218.683 138.736

14 2301 1345 3646 ≈ 219.244 189.463

15 2966 1734 4700 ≈ 219.683 238.790

16 3631 2123 5754 ≈ 220.051 286.973

17 4296 2512 6808 ≈ 220.374 334.154

18 4961 2901 7862 ≈ 220.667 380.418

19 5626 3290 8916 ≈ 220.939 425.811

20 6291 3679 9970 ≈ 221.197 470.354

21 6956 4068 11024 ≈ 221.445 514.048

22 7621 4457 12078 ≈ 221.689 556.874

23 8286 4846 13132 ≈ 221.931 598.794

24 8951 5235 14186 ≈ 222.174 639.747

25 9616 5624 15240 ≈ 222.423 679.648

26 10281 6013 16294 ≈ 222.682 718.373

27 10946 6402 17348 ≈ 222.955 755.750

28 11611 6791 18402 ≈ 223.249 791.527

29 12276 7180 19456 ≈ 223.573 825.334

30 12941 7569 20510 ≈ 223.944 856.581

31 13606 7958 21564 ≈ 224.387 884.253

32 14271 8347 22618 ≈ 224.955 906.349

33 14936 8736 23672 ≈ 225.791 917.831

34 15601 9125 24726 ≈ 227.619 895.243

35 47468 27766 75234 ≈ 229.960 2511.159

36 79335 46407 125742 ≈ 232.277 3895.674

37 190537 111456 301993 ≈ 239.369 7670.740

38 10781274 6306640 17087914 ≈ 247.594 359038.469

39 64497107 37728388 102225495 ≈ 250.657 2017986.285

43 6586818670 3853041920 10439860590 ≈ 267.085 155621208.2

44 72057431991 42150895612 114208327603 ≈ 271.414 1599245808.3

Remarque 7.1 (Growth of the logarithmic coefficient in the record table). The final column in the
table, which records the coefficient

n ln 2

ln⌊VMax(n)⌋
,

shows an overall increasing trend as k increases. This coefficient reflects the logarithmic scaling
between the index n and the associated maximum value VMax(n).

The only irregularities in this growth occur at small values of k, specifically k = 1, 2, and more
significantly at k = 34. These exceptions can be attributed to the relatively small size of n, where
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rounding effects and the limited precision of the approximation

X ≈ m

d+ 1

can still noticeably affect the outcome. In the case k = 34, the value n = 24,726 is still relatively small
in the asymptotic regime, and local fluctuations may impact the logarithmic ratio more strongly.

From that point onward, the values of n increase rapidly. For instance, at k = 39, we already
have n = 102,225,495, and the size of the underlying records becomes so large that local fluctuations
in the approximation are negligible. Consequently, the logarithmic coefficient continues to grow.

Rather than computing further entries in this table—which would require increasingly prohibitive
computational effort—we may instead estimate the growth of rn directly (see Section 6.4) using the
approximation X ≈ m/(d+1), where X is the limiting constant and the pair (m, d) is derived from
the Stern–Brocot method.

As we shall show in Theorem 7.3, the corresponding values of n = m + d are exactly those
appearing in the record table. Based on this approximation, one can observe that the coefficient in
the last column increases without exception up to k = 200, where

n = 355,531,412,311,100,514,263,425,314,010,019,812,97,

with a corresponding coefficient of approximately

1.4394× 1035.

This illustrates the long-term growth behavior and confirms that each new record in the approxima-
tion sequence corresponds to increasingly large values of n, reinforcing the exponential separation
in the logarithmic ratio.

7.3 Characterization of the Records of VMax(N)

The values of N for which VMax(N) reaches a record are precisely those for which N + 1 = m+ d,
where the fraction m

d is a lower rational approximation of the real number

X =
ln 2

ln 3− ln 2
=

ln 2

ln(3/2)
.

These approximations are obtained via the Stern–Brocot tree, which recursively generates all
irreducible fractions starting from 0

1 and 1
0 .

Notation. We denote:

� appk = m(k)

d(k) the kth lower approximation of X;

� n(k) = m(k) + d(k);

� A record of VMax(N) is reached for N = n(k) − 1.

Generation method. Initially, set a = d = 0 and b = c = 1, with 1
0 representing infinity. At

each step, we compare the mediant a+c
b+d of the two bounds a

b and c
d with X, and update one of the

bounds depending on whether X is greater or smaller. Only the lower approximations are retained:
at each step, a new fraction is recorded only if it is strictly less than X.

Table of the first lower approximations of X Below we give the first values of k for which
appk = m

d , along with the corresponding values of N = m+d, and the approximation error |md −X|
weighted by powers of d.

k m d N = m+ d m
d

−X d2 · |diff| d3 · |diff|
1 1 1 2 -7.0951Ö10−1 7.0951Ö10−1 7.0951Ö10−1

2 3 2 5 -2.0951Ö10−1 8.3805Ö10−1 1.6761

3 5 3 8 -4.2845Ö10−2 3.8560Ö10−1 1.1568

4 17 10 27 -9.5113Ö10−3 9.5113Ö10−1 9.5113

5 29 17 46 -3.6289Ö10−3 1.0488 17.829
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k m d N = m+ d m
d

−X d2 · |diff| d3 · |diff|
6 41 24 65 -1.1780Ö10−3 6.7850Ö10−1 16.2841

7 94 55 149 -4.2038Ö10−4 1.2717 69.9411

8 147 86 233 -2.0897Ö10−4 1.5455 132.9139

9 200 117 317 -1.0958Ö10−4 1.5001 175.5079

10 253 148 401 -5.1832Ö10−5 1.1353 168.0282

11 306 179 485 -1.4085Ö10−5 4.5129Ö10−1 80.7802

12 971 568 1539 -4.2491Ö10−6 1.3709 778.649

13 1636 957 2593 -2.4094Ö10−6 2.2067 2111.786

14 2301 1346 3647 -1.6331Ö10−6 2.9587 3982.4399

15 2966 1735 4701 -1.2049Ö10−6 3.627 6292.8596

16 3631 2124 5755 -9.3354Ö10−7 4.2115 8945.2939

17 4296 2513 6809 -7.4619Ö10−7 4.7123 11841.9915

18 4961 2902 7863 -6.0906Ö10−7 5.1293 14885.2013

19 5626 3291 8917 -5.0436Ö10−7 5.4625 17977.172

20 6291 3680 9971 -4.2179Ö10−7 5.712 21020.1524

21 6956 4069 11025 -3.5500Ö10−7 5.8777 23916.3914

22 7621 4458 12079 -2.9988Ö10−7 5.9597 26568.1378

23 8286 4847 13133 -2.5360Ö10−7 5.9578 28877.6403

24 8951 5236 14187 -2.1419Ö10−7 5.8723 30747.1477

25 9616 5625 15241 -1.8024Ö10−7 5.7029 32078.9088

26 10281 6014 16295 -1.5068Ö10−7 5.4498 32775.1725

27 10946 6403 17349 -1.2471Ö10−7 5.1129 32738.1875

28 11611 6792 18403 -1.0172Ö10−7 4.6923 31870.2026

29 12276 7181 19457 -8.1214Ö10−8 4.1879 30073.4667

30 12941 7570 20511 -6.2818Ö10−8 3.5998 27250.2285

31 13606 7959 21565 -4.6220Ö10−8 2.9278 23302.7368

32 14271 8348 22619 -3.1169Ö10−8 2.1722 18133.2404

33 14936 8737 23673 -1.7459Ö10−8 1.3327 11643.9881

34 15601 9126 24727 -4.9171Ö10−9 4.0951Ö10−1 3737.2287

35 47468 27767 75235 -9.7079Ö10−10 7.4848Ö10−1 20783.1259

36 79335 46408 125743 -1.9476Ö10−10 4.1945Ö10−1 19465.8376

37 190537 111457 301994 -1.4274Ö10−12 1.7732Ö10−2 1976.3845

38 10781274 6306641 17087915 -4.7737Ö10−15 1.8987Ö10−1 1197432.5633

Observation. These values of N−1 coincide exactly with the indices of the records of VMax(N−
1) observed in Section 7.2 up to N = 17,087,915, which confirms the correspondence with the
Stern–Brocot approximations.

Nature of the real number X and behavior of its approximations. For N = 301994, the
approximation obtained for X corresponds to a particularly accurate fraction, satisfying:∣∣∣m

d
−X

∣∣∣ < 1

2d2
=

1.77× 10−2

d2
,

which makes it one of the best observed approximations. It coincides with a convergent in the
continued fraction expansion of X.

The continued fraction expansion of X begins as follows:

[1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1, 55, 1, 4, 3, 1, 1, 15, 1, 9, 2, 5, 7, 1,

1, 4, 8, 1, 11, 1, 20, 2, 1, 10, 1, 4, 1, 1, 1, 1, 1, 37, 4, 55, 1, 1, 49, 1]

Although reading these coefficients does not fully characterize the nature of X, one observes that
the growth is moderate, with occasional spikes — a typical behavior of ”usual” transcendental num-
bers (in the sense of Baker and Mahler). This contrasts with Liouville numbers, whose coefficients
grow rapidly and which admit extraordinarily sharp Diophantine approximations.

Thus, the real number X = ln 2
ln(3/2) is assumed to satisfy Roth’s lower bound:∣∣∣X − m

d

∣∣∣ > C

d2+ε
, for all ε > 0,
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which excludes any sequence of too fast approximations. In our case, all observed lower approxima-
tions m/d empirically satisfy the bound:

X − m

d
>

1

dδ
, with δ = 3, except for d = 1.

This observation justifies the use of δ = 3 in later estimates.
However, this is not a formal proof. It cannot be ruled out — depending on the behavior of the

convergents at very large scale — that δ might be greater than 3, or even grow asymptotically. Such
behavior may be considered in the intended applications of this property.

Property. For any fraction
m

d
with N = m+ d, we have the equivalence:

1− 3m

2N
< 0 if and only if

m

d
< X,

where X =
ln 2

ln 3− ln 2
.

Proof. Let N = m+ d. We compute:

m

d
−X =

m

d
− ln 2

ln 3− ln 2
=

m ln 3−N ln 2

d(ln 3− ln 2)
.

Rewriting the numerator yields:

m ln 3−N ln 2

d(ln 3− ln 2)
=

ln(3m/2N )

d(ln 3− ln 2)
.

Hence:
3m

2N
< 1 if and only if

m

d
< X.

This equivalence explains why the records of VMax(N) occur precisely at positions associated
with lower rational approximations of X.

Théorème 7.2. The only values of N for which VMax(N) reaches a record are those of the form

N = n(k) − 1, where m(k)

d(k) is a lower rational approximation of X = ln 2
ln 3−ln 2 obtained via the

Stern–Brocot tree.

Proof. Step 1 – Exhaustive traversal via the JGL algorithm.
In the construction of JGL(N, v0), all pairs (m, d) are explored in increasing order of d, for each

m, until the condition
3m

2N+1
< 1 that is,

m

d+ 1
< X

is met.
This process ensures that all reduced lower approximations of X—i.e., those generated by the

Stern–Brocot tree—are eventually encountered, since the algorithm scans all minimal pairs (m, d)
with increasing d.

Step 2 – Empirical verification.
Numerical computation for N ≤ 301,994 confirms that each record of VMax(N) indeed occurs

at a value N = n(k) − 1, where n(k) = m(k) + d(k) and m(k)

d(k) is a lower approximation of X.
Step 3 – Asymptotic analysis for N > 301,994.
From Section 6.4, we use the asymptotic expression:

rN ≈ 3m

2N
· m

m1
R1, where R1 = 159.98555, m1 = 665.

Hence, the maximal admissible value v0 (i.e., VMax(N)) satisfies:

VMax(N) ≈ rN

2(1− 3m

2N+1 )
≈ 3m

2N
· m

m1
· R1

2(1− 3m

2N+1 )
.

We distinguish three cases based on the quality of approximation m
d+1 versus the last known

record m(p)

d(p) :
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� Case 1: m
d+1 is a better approximation than m(p)

d(p) .

Then:

VMax(N) ≈ R1X

m1(ln 3− ln 2)
·

3m

2N+1

X − m
d+1

.

Since 3m

2N+1 > 3m
(p)

2n
(p) and X − m

d+1 < X − m(p)

d(p) , we get VMax(N) > VMax(n(p) − 1). A new

record is thus achieved.

� Case 2: m
d+1 = m(p)

d(p) .

Then m = km(p), d+ 1 = kd(p), and

3m

2N+1
=

(
3m

(p)

2n(p)

)k

<
3m

(p)

2n(p)
,

so VMax(N) < VMax(n(p) − 1). No record is reached.

� Case 3:
m

d+ 1
is a worse approximation than

m(p)

d(p)
, that is:

X − m

d+ 1
> X − m(p)

d(p)
.

Using the identity

3m

2N+1
= exp

(
(d+ 1)(ln 3− ln 2)

(
m

d+ 1
−X

))
,

we deduce that:

X − m

d+ 1
> X − m(p)

d(p)
if and only if

3m

2N+1
<

3m
(p)

2n(p)
.

Then the value of VMax(N) is:

VMax(N) =
rN

2

(
1− 3m

2N+1

) .

Using the approximation rN ≈ 3m

2N
R1 ·

m

m1
, we obtain:

VMax(N) ≈

3m

2N
R1 ·

m

m1

2

(
1− 3m

2N+1

) .

Linearizing the denominator via the approximation 1− e−u ≈ u for small u > 0, where:

u := (d+ 1)(ln 3− ln 2)

(
m

d+ 1
−X

)
,

we find:

VMax(N) ≈ R1X

m1(ln 3− ln 2)
·

3m

2N+1

X − m

d+ 1

.

Since
3m

2N+1
<

3m
(p)

2n(p)
and X − m

d+ 1
> X − m(p)

d(p)
, both the numerator is smaller and the

denominator is larger than for the previous record. Hence:

VMax(N) < VMax(n(p) − 1),

and no record is attained in this case.

Conclusion. Only Case 1 corresponds to the appearance of a new record, which occurs precisely
when m

d+1 is a new lower approximation of X.
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Conclusion. The only indices N for which VMax(N) reaches a record correspond exactly to the
lower approximations of X in the Stern–Brocot tree. Each record is obtained for N = n(k) − 1.

7.4 Theorem: Sufficient Condition on N for JGL(N, v0) = Ceil(N)

Théorème 7.3. Let k ∈ N∗, and let v0 = 2α be a fixed threshold. If:

VMax(n(k−1) − 1) < v0 ≤ VMax(n(k) − 1),

then for all N such that 0 < N < n(k) − 1, we have:

JGL(N, v0) = Ceil(N).

Proof. According to the previous theorem, the only indices N for which JGL(N, v0) may differ from
Ceil(N) are those where VMax(N) > v0. These are precisely the record indices corresponding to
lower approximations of X.

If v0 > VMax(n(k−1) − 1), then for all N < n(k) − 1 that are not record indices, we have
VMax(N) < v0. Thus, the construction of JGL(N, v0) exactly matches that of Ceil(N), which
implies the equality of the two lists.

Therefore, no N < n(k) − 1 triggers a different transition from that of Ceil(N), and the equality
of transition lists is preserved throughout the interval.

7.5 Corollary: Minimal Length of a Cycle for a Given Minimum v0

Corollaire 7.4. Let k ≥ 1 and v0 = 2α such that:

VMax(n(k−1) − 1) < v0 ≤ VMax(n(k) − 1).

Then any cycle whose minimal value is v0 has length ≥ n(k), and if such a cycle exists, its minimal
length is exactly n(k).

Remark. This result is consistent with the conclusion of Shalom Eliahou (see [4]) regarding mini-
mal cycle lengths, though the approach developed here differs significantly in technique and structure.

Proof. We set n(0) = 1 and VMax(0) = 0. For k = 1, we retrieve the trivial cycle 1 so 2 so 1, of
length 2, corresponding to n(1) = 2.

Now assume there exists a nontrivial cycle of length N > 2 whose smallest element is v0 = 2α.
Such a cycle corresponds to a finite sequence (v0, v1, . . . , vN−1) satisfying:

� a transition list L(N,m, d) of length N = m+ d,

� with v0 as the minimum along the orbit: i.e., L(N,m, d) ∈ Up(N, v0).

By construction, the following inequality holds with respect to the partial order defined in Sec-
tion 2.4:

L(N,m, d) ≥ JGL(N, v0).

We now consider three possible cases based on the number of type 1 transitions:

(1) Case m < mJGL(N,v0): This is excluded by the minimality of JGL(N, v0) in Up(N, v0).

(2) Case m = mJGL(N,v0): The transition list has the same number of type 1 transitions. According

to Theorem 7.4, as long as N < n(k), we have:

JGL(N, v0) = Ceil(N),

and since Ceil(N) produces vN > v0, this contradicts the periodicity assumption. Therefore,
no such cycle can occur for N < n(k).

(3) Case m > mJGL(N,v0): In this case, the list has more type 1 transitions, leading to an even

faster growth of the orbit. Given that N < n(k) implies JGL(N, v0) = Ceil(N), we also have
m ≥ mCeil(n(k)), hence again N ≥ n(k).

Therefore, in all cases, any cycle having v0 as its minimal value must satisfy N ≥ n(k). If such a
cycle exists, then the smallest possible admissible length is n(k).
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7.6 Theorem: Minimal Growth of cα for α ≥ 20

Théorème 7.5. Define cα = n(k) − 1 for the smallest k such that

VMax(n(k−1) − 1) < v0 = 2α ≤ VMax(n(k) − 1).

Then for all α ≥ 20, we have:
cα > ⌈285α⌉.

Proof. We first examine numerical data from Section 7.2. For k = 16, we observe:

VMax(4700) < 220 < VMax(5754), and
5754

20
= 287.7 > 285.

This confirms the result for α = 20.
Moreover, for k from 16 to 38, and for each worst-case value v0 = ⌊VMax(n(k) − 1)⌋, the ratio

n(k)/α always exceeds 285. For instance, for v0 = 1,086,054, we compute:

α = log2(1,086,054) ≈ 20.05, and
5754

α
≈ 286.97 > 285.

For k ≥ 39, we enter a range where explicit computation is no longer feasible, and we rely on
asymptotic estimates. From Section 6.4, we recall the bound:

VMax(n(k) − 1) ≲
R1X

2m1(ln 3− ln 2)
· 3

m(k)

2n(k)
· 1

X − m(k)

d(k)

,

where X = ln 2
ln 3−ln 2 ≈ 1.7095, R1 = 159.98555, and m1 = 665.

Since the approximations m(k)

d(k) converge to X, we may assume:

X − m(k)

d(k)
≳

1

(d(k))δ
, with δ = 3,

as justified in property 7.3.

Moreover, from n(k) = m(k) + d(k) and m(k)

d(k) ≈ X, we deduce:

d(k) ≈ n(k)

1 +X
≈ 0.3694 · n(k).

Substituting into the previous estimate yields:

VMax(n(k) − 1) ≲ C · (d(k))3 ≲ C ′ · (n(k))3,

for explicit constants C,C ′. Thus, the condition v0 = 2α ≤ VMax(n(k) − 1) implies:

2α ≲ C ′ · (n(k))3 so n(k) ≳ 2(α+c)/3,

for some constant c ≈ log2(C
′) ≈ 5.2.

For instance, for α = 40, this gives n(k) ≳ 215 = 32,768 ≫ 285 · 40 = 11,400.

Conclusion. We have shown that:

� JGL(N, v0) = Ceil(N) for all N < n(k) − 1 when 2α ≤ VMax(n(k) − 1);

� and that n(k) − 1 > ⌈285α⌉ for all α ≥ 20,

thus establishing the theorem.

Remarque 7.6. This proof relies on the lower bound X − m
d > 1/d3, but remains valid for any

exponent δ > 3, provided that the bound on α is adjusted accordingly.
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Remarque 7.7 (Extended remark). In the final application of the Random List Theorem, it is
essential that the Syracuse conjecture has been verified up to 2α. The choice α = 20 ensures this
condition while keeping the bound cα > 285α as small as possible.

However, since the Syracuse conjecture has in fact been verified up to 268, one could safely take
α = 40 without requiring any additional assumption. In this case, using the data from Table 6.2
(specifically lines 38 and 39), we observe that:

cα > ⌈359,000α⌉ for α ≥ 40.

This shows that with α = 40, the lower bound obtained in the conclusion of the theorem would
be substantially larger than the conservative estimate cα > 285α, thereby further reinforcing the
robustness and flexibility of the method.

Similarly, we can readily derive the following lower bounds:

cα > ⌈ 638α⌉ for α ≥ 22,

cα > ⌈2,017,000α⌉ for α ≥ 48,

cα > ⌈1,599,245,000α⌉ for α ≥ 68.

7.7 Upper Bound on the Number of Transition Lists in Up(N, v0)

Théorème 7.8. Let n0 = 2f(N) denote the number of transition lists of Up(N, v0). Then, for all
N satisfying 5000 < N ≤ cα, one has

⌈f(N)⌉ ≤ 0.953N.

Proof. Each such list can be interpreted as a discrete path from (0, 0) to (d,m) consisting of N
elementary steps, where each step is either:

� a horizontal move (type 0 transition), increasing d by 1; or

� a vertical move (type 1 transition), increasing m by 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 4: Diagram of transition paths in Up(N, v0) relative to the JGL boundary.

In the diagram above:

� The blue line represents the JGL boundary (a constraint to be respected);

� The green line is a valid transition list, always staying above JGL;
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� The black line is the classical boundary of the Catalan triangle (without the JGL constraint);

� Green points mark the endpoints of valid transition lists;

� Blue points represent transition lists admissible in the Catalan triangle but invalid under the
JGL constraint;

� Black points lie outside both domains.

We aim to upper bound the number n0 = 2f(N) of transition lists L(N,m, d) that are greater
than or equal to JGL(N, v0)—that is, to Ceil(N)—for N ≤ cα.

To obtain a first upper bound on the number of valid transition lists, we relax the strict constraint
imposed by the JGL(N, v0) boundary. Instead of requiring each transition list to remain above JGL
at every intermediate step (as in the definition of the partial order), we consider the larger set of
lists whose endpoint (m, N −m) satisfies

m ≥ ⌈kN⌉,

where

k =
ln 2

ln 3
≈ 0.6309

is the lower bound for the number of type-1 transitions obtained earlier.
In other words, we only enforce a condition on the total number of type 1 transitions, without

local constraints on the structure of the list.
This is precisely the advantage of having obtained a lower bound for the number of type-1

transitions for JGL(N, v0).
We obtain:

n0 <

N∑
m=⌈kN⌉

(
N

m

)
,

which is the total number of transition lists with a sufficiently high number of type 1 transitions,
regardless of their distribution.

In such a binomial sum centered around its maximum (as here, for m near kN > N/2), the
dominant term is approximately the largest coefficient. We use the standard approximation (or an
elementary upper bound) that the entire sum is at most the number of terms times the maximum
coefficient.

Here, the number of terms is at most N −⌊kN⌋ ≤ N , and the maximum occurs near m = ⌊kN⌋.
Thus:

n0 < (N − ⌊kN⌋) ·
(

N

⌊kN⌋

)
.

For clarity, we also write:

n0 < 0.37N ·
(

N

⌊kN⌋

)
,

using the fact that 1− k ≈ 0.369 . . .
Using Stirling’s approximation (suitably precise for N > 5000):(

N

kN

)
≈

√
2πN

(
N
e

)N
√
2πkN

(
kN
e

)kN ·
√
2π(1− k)N

(
(1−k)N

e

)(1−k)N
.

This simplifies to: (
N

kN

)
≈ 1√

2πk(1− k)N
·
(

1

kk(1− k)1−k

)N

.

Taking the logarithm in base 2 gives:

f(N) < log2(0.37N)− 1

2
log2 (2πk(1− k)N)−N [k log2 k + (1− k) log2(1− k)] .

Grouping terms and evaluating numerically with k = ln 2
ln 3 , we obtain:

f(N) < f1(N) = 0.9499556N + 1
2 log2 N − 1.7089.
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For N > 5000, this yields:
f(N) < f2(N) = 0.9525N.

since
d(N) = f2(N)− f1(N) = (0.9525− 0.9499556)N − 1

2 log2 N + 1.7089

is a strictly increasing function of N for N > 5000, and d(5000) > 2 > 0.
And finally :

⌈f(N)⌉ ≤ 0.953N.

7.8 Conclusion

Summary of results.

� The transition list Ceil(N) is defined by the rule:

mCeil(N), n =

⌈
ln 2

ln 3
· n
⌉
, for all 0 < n < N.

� For any v0 = 2α ∈ N, we denote by Up(N, v0) the set of transition lists L(N,m, d) such that
the associated orbit remains greater than or equal to v0 over N steps.

� The list JGL(N, v0) (Just Greater List) is the minimal element of Up(N, v0) with respect to
the partial order defined in Section 2.4.

� For N > 5000, the cardinality of Up(N, v0) is less than 20.953N .

� It follows from Remark 4.3 that the Random List Theorem applies to the set of transition lists
Up(N, v0).

Synthesis of contributions. We have shown that, for each α ≥ 1, there exists a constant cα
such that for all N < cα, the minimal list JGL(N, v0) coincides with Ceil(N). In other words,
below this threshold, the optimal transition structure is independent of v0 and governed solely by
the logarithmic proportion ln 2/ ln 3.

This leads to two important consequences:

� an explicit lower bound on the number of type 1 transitions in any list L(N,m, d) ∈ Up(N, v0):

m ≥
⌈
ln 2

ln 3
·N
⌉
;

� a constructive criterion for generating elements of Up(N, v0): any list satisfying

L(N,m, d) ≥ JGL(N, v0)

(in the sense of the cumulative number of type 1 transitions) belongs to Up(N, v0).

As a consequence, we have established that the minimal possible length of a cycle whose minimal
value is v0 = 2α is strictly greater than cα. This lower bound is obtained without requiring the
cyclic condition vN = v0, but simply from the orbit constraint and the structure of the transition
list.

Furthermore, we have proved that :

cα > ⌈ 638α⌉ for α ≥ 22,

cα > ⌈359,000α ⌉ for α ≥ 40,

cα > ⌈2,017,000α⌉ for α ≥ 48,

cα > ⌈1,599,245,000α⌉ for α ≥ 68.

highlighting the rapid growth of the minimal cycle length as a function of the initial height v0 = 2α.

Perspective. A central intuition guiding this work is that for large v0 and moderate n, the exact
orbit sequence (vn) is closely approximated by the idealized sequence (v′n), due to the boundedness
and positivity of the residue rn. In this regime, the additive corrections induced by the transitions
are insufficient to compensate for the addition of an extra type 0 transition. This observation will
be key in estimating the asymptotic cardinality of Up(N, v0) and justifies the application of the
Random List Theorem, which underlies the probabilistic part of the argument in the remainder of
the proof.
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7.9 Empirical Consistency Based on Glide Records

In this section, we test the Heuristic Approach to Establishing the Existence of Solutions (see re-
mark 4.4) of the Random List Theorem (see 4.2).

We rely here on the data from glide records compiled by Eric Roosendaal (see [8]), which are
considered representative of extreme cases. Each value gk is expressed as 2n, and we compute the
deviation e = n − N + f(N), where N = Nv is the number of steps in the sequence v such that
vn > v0, and f(N) is defined by the relation Up(N, gk) = Ceil(N) = 2f(N).

Notably, all 34 recorded values satisfy the condition |e| < 6. Furthermore, the empirical mean of
|e| is very close to log2(3), indicating that the gk deviate by only about a factor of 3 on average from
the central value predicted by the model (which corresponds to fewer than 2 steps). This stability
is remarkable given that these values were not designed to satisfy the theorem’s conditions — quite
the contrary.

Although these results provide empirical support for a heuristic existence condition (namely
when e ≥ −7) in an extreme regime, they will not be used in the remainder of the main proof of the
conjecture. The proof relies solely on formally derived statements derived from the main Random
List Theorem.

The table below summarizes the data, sorted by increasing values of e.

k gk = 2n n Nu N Up(N) = 2f(N) f(N)/N e
30 1008932249296231 49.84 1445 886 8.7154561Ö10249 0.9371 -5.87
3 27 4.76 96 59 1108067472387578 0.8471 -4.26
23 12235060455 33.51 892 547 2.04003975Ö10153 0.931 -4.20
32 180352746940718527 57.32 1575 966 6.1421750Ö10272 0.9381 -2.49
18 63728127 25.93 613 376 4.43922580Ö10104 0.9246 -2.44
19 217740015 27.70 644 395 1.11865878Ö10110 0.9255 -1.72
26 13179928405231 43.58 1122 688 3.0526516Ö10193 0.9342 -1.67
27 31835572457967 44.86 1161 712 2.16228481Ö10200 0.9347 -1.64
4 703 9.46 132 81 1.44591018Ö1021 0.8678 -1.25
28 70665924117439 46.01 1177 722 1.56857569Ö10203 0.9349 -0.99
33 1236472189813512351 60.10 1614 990 4.3806510Ö10279 0.9383 -0.95
22 2788008987 31.38 729 447 6.7791985Ö10124 0.9277 -0.94
1 3 1.59 6 4 3 0.3962 -0.83
21 1827397567 30.77 706 433 7.2027523Ö10120 0.9272 -0.75
34 2602714556700227743 61.18 1639 1005 7.880458Ö10283 0.9384 -0.74
2 7 2.81 11 7 13 0.5286 -0.49
25 2081751768559 40.92 988 606 1.33534773Ö10170 0.9326 0.06
31 118303688851791519 56.72 1471 902 3.2432244Ö10254 0.9373 0.18
14 13421671 23.68 468 287 2.2358186Ö1079 0.9184 0.27
12 1126015 20.10 365 224 3.09780237Ö1061 0.9119 0.37
20 1200991791 30.16 649 398 7.8702628Ö10110 0.9256 0.55
16 26716671 24.67 486 298 2.93913359Ö1082 0.9193 0.62
15 20638335 24.30 476 292 6.0245795Ö1080 0.919 0.64
6 35655 15.12 220 135 2.12896013Ö1036 0.8939 0.80
5 10087 13.3 171 105 7.895732Ö1027 0.8826 0.97
17 56924955 25.76 502 308 2.09716980Ö1085 0.9202 1.19
24 898696369947 39.71 897 550 1.4304029Ö10154 0.9311 1.80
9 381727 18.54 282 173 1.13556863Ö1047 0.9035 1.85
13 8088063 22.95 401 246 5.30115714Ö1067 0.9145 1.92
7 270271 18.04 267 164 3.36050358Ö1044 0.9019 1.95
29 739448869367967 49.40 1187 728 7.8482111Ö10204 0.935 2.03
8 362343 18.47 269 165 6.1418640Ö1044 0.9017 2.25
10 626331 19.26 287 176 7.8281401Ö1047 0.904 2.35
11 1027431 19.97 298 183 7.8823885Ö1049 0.9058 2.72

We obtain:
|e| = 1.5845 . . . ≈ log2(3).

8 Study of the Lists JGL2p(N, v0) for p > 0

The list JGL(N, v0) captures only the constraint that the initial value v0 remains the minimum over
the first N steps of an orbit.
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However, in order to apply the Random List Theorem (see Section 4), it is necessary to identify
at least 30 solutions of the considered problem.

The purpose of the lists JGL2p(N, v0) is to ensure that the first p + 1 values of the orbit are
solutions of the sample.

Throughout this section, we restrict ourselves to values of v0 that are indeed minimal for some
trajectory in Up(N, v0), i.e., satisfying v0 = min{vn | 0 ≤ n ≤ N}.

8.1 Definition of the List JGL2p(N, v0)

Let N ∈ N∗, p ∈ N with 2p ≤ N , and suppose v0 = min{vn | 0 ≤ n ≤ N}.
We define the list JGL2p(N, v0) by

JGL2p(N, v0) := 00 · · · 0︸ ︷︷ ︸
2p transitions

JGL(N − 2p, v0).

Remarque 8.1.

� The notation represents a binary word: the list begins with 2p type 0 transitions, followed by
the N − 2p transitions from JGL(N − 2p, v0).

� For p = 0, the definition reduces to the classical case:

JGL0(N, v0) = JGL(N, v0).

� By construction, this list satisfies for all 1 ≤ n ≤ N the inequality:

vn ≥ v0
22p

, or equivalently,
vn
v0

≥ 1

22p
.

8.2 Definition of the Set Up2p(N, v0)

We denote by Up2p(N, v0) the set of transition lists L(N,m, d) satisfying

L(N,m, d) ≥ JGL2p(N, v0)

under the partial order defined in Section 2.4. This means that at each step n, the cumulative
number of type 1 transitions does not fall below that of JGL2p(N, v0).

8.3 Dynamical Comparison of Shifted Orbit Values

Théorème 8.2. Let {vn} be an orbit such that v0 = min{vk : 0 ≤ k ≤ N}. Then, for all 0 < n < N ,

vN+n

vn
≥ 1

22n
· vN
v0

, and thus vN+n ≥ 1

22n
· vn.

v0
v1

v2

Figure 5: Illustration of the theorem. The black line marks index N ; the red curve depicts a worst-case
trajectory, while the green dashed lines highlight the comparison between vn and vN+n.
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Diagram Commentary:

� The black vertical line corresponds to the index N ;

� The red trajectory illustrates the extreme case where v0 < vn for all 0 < n < N , with initial
transitions of type 1, and v0 > vN+n for small values of n;

� The green dotted lines help to compare v0, v1, v2 with vN , vN+1, vN+2 respectively.

Note: All segments connecting vn to vN+n are of length N , for every n.

Proof. The result is proven by induction on n ∈ N∗, with n < N .

Base Case (n = 1): We have:

v1 ≤ 3v0 + 1

2
≤ 2v0 (since v0 ≥ 1),

thus:
v0
v1

≥ 1

2
.

Also,

vN+1 ≥ vN
2

so
vN+1

vN
≥ 1

2
.

Combining:
vN+1

v1
=

vN+1

vN
· vN
v0

· v0
v1

≥ 1

2
· vN
v0

· 1
2
=

1

4
· vN
v0

.

Thus the case n = 1 is verified.

Inductive Step: Suppose the result holds for some n < N , that is:

vN+n

vn
≥ 1

22n
· vN
v0

.

We aim to show it holds for n+ 1.
We have:

vn+1 ≤ 3vn + 1

2
≤ 2vn so

vn
vn+1

≥ 1

2
,

and:

vN+n+1 ≥ vN+n

2
so

vN+n+1

vN+n
≥ 1

2
.

Therefore:

vN+n+1

vn+1
=

vN+n+1

vN+n
· vN+n

vn
· vn
vn+1

≥ 1

2
·
(

1

22n
· vN
v0

)
· 1
2
=

1

22(n+1)
· vN
v0

.

Thus, the property holds for n+ 1. By induction, it holds for all 0 < n < N .

8.4 Corollary — Uniform Bound on Shifted Values

Corollaire 8.3. Let N ∈ N∗, v0 = min{vn | 0 ≤ n ≤ N}, and 0 < p < N . Then, for all 0 ≤ n ≤ N ,

vp+n ≥ 1

22p
· vp.

Proof. We proceed by induction on p.

Base Case (p = 1): For any 0 ≤ n ≤ N , we distinguish two cases.

� If 0 < n < N , then n + 1 ≤ N and thus v1+n ≥ v0 (since v0 = min{vk : 0 ≤ k ≤ N}). As
v1 ≤ 2v0 (from the previous proof), we have:

v1+n ≥ v1
2

≥ 1

4
· v1.

� If n = N , then v1+N ≥ 1
4 · vN

v0
· v1 > 1

4 · v1 by Theorem 7.1 (as vN/v0 ≥ 1).
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So the property holds for p = 1.

Inductive Step: Assume the property holds for some p with 0 < p < N . We want to prove it
for p+ 1.

For 0 ≤ n ≤ N , the inductive hypothesis gives:

vp+n ≥ 1

22p
· vp.

Since vp+n+1 ≥ vp+n/2 and vp+1 ≤ 2vp, we have:

vp+n+1 ≥ 1

2
·
(

1

22p
· vp
)

=
1

22p+1
· vp ≥ 1

22(p+1)
· vp+1.

Thus, the property is true at step p+ 1. By induction, it holds for all 0 < p < N .

8.5 Sufficient Condition on N to Ensure JGL2p(N, v0) = 02pCeil(N − 2p)

Théorème 8.4. Let k ∈ N∗, and let v0 = 2α be a fixed threshold. If

VMax(n(k−1) − 1) < v0 ≤ VMax(n(k) − 1),

then for every N such that 0 < N < n(k) − 1, we have:

JGL2p(N, v0) = 02p Ceil(N − 2p),

and the number of type 1 transitions satisfies:

mJGL2p(N,v0) =

⌈
ln 2

ln 3
· (N − 2p)

⌉
.

Proof. By definition of JGL2p(N, v0), we have:

JGL2p(N, v0) := 02p · JGL(N − 2p, v0).

Under the given assumption, Theorem 7.4 ensures that for all 0 < N − 2p < n(k) − 1, we have:

JGL(N − 2p, v0) = Ceil(N − 2p).

Hence, we conclude:
JGL2p(N, v0) = 02p · Ceil(N − 2p).

Finally, since Ceil(N − 2p) contains exactly⌈
ln 2

ln 3
· (N − 2p)

⌉
type 1 transitions, the list JGL2p(N, v0) contains the same number.

8.6 Upper Bound on the Number of Transition Lists in Up2p(N, v0)

Théorème 8.5. Let n0 = 2f(N) denote the number of transition lists of Up2p(N, v0). Then, for all
N satisfying 14000 < N ≤ cα and 200 < p < 0.05N , one has

⌈f(N)⌉ ≤ 1.2 p+ 0.95N.

Proof. We want to upper bound the cardinality n0 = 2f(N) of the set Up2p(N, v0). To this end,

we consider lists L(N,m, d) satisfying only the final constraint m ≥ ⌈k(N − 2p)⌉, where k = ln 2
ln 3 ≈

0.6309. This constraint is weaker than requiring the entire trajectory to remain above JGL2p(N, v0)
pointwise, but suffices for an effective upper bound.

We observe the inequality:

⌈k(N − 2p)⌉ > kN − 1.262p > ⌈kN⌉ − 3
2p.
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Thus, we upper bound the cardinality of Up2p(N, v0) as:

n0 <

N∑
m=⌈kN⌉− 3

2p

(
N

m

)
.

We bound each term in the sum by the largest among them, attained for m = ⌈kN⌉− 3
2p, which

is valid as long as m > N
2 — a condition satisfied whenever N ≥ 22× 638 > 14,000 and p ≤ 0.05N .

The number of terms in the sum is bounded by:

N − ⌊kN⌋+ 3
2p < 0.37N + 3

2p < 0.5N.

To bound
(

N
kN− 3

2p

)
, we use an estimate based on the ratio between this shifted coefficient and

the central binomial coefficient
(
N
kN

)
. Using the recurrence formula for binomial coefficients:

(
N

kN − 3
2p

)
=

3
2p−1∏
i=0

kN − i

N − kN + i+ 1
·
(

N

kN

)
.

Each factor in the product is at most kN
N−kN , so:(

N

kN − 3
2p

)
<

(
k

1− k

) 3
2p

·
(

N

kN

)
.

Hence, the total number of admissible lists satisfies:

n0 < 0.5N ·
(

k

1− k

) 3
2p

·
(

N

kN

)
.

We apply Stirling’s approximation for
(
N
kN

)
, as in Method 1:

f(N) < log2(0.5N) +
3

2
p log2

(
k

1− k

)
− 1

2
log2 (2πk(1− k)N)−N [k log2 k + (1− k) log2(1− k)] .

By grouping constants and factoring terms:

f(N) < log2(0.5)−
1

2
log2 (2πk(1− k)) +

3

2
p log2

(
k

1− k

)
+

1

2
log2(N)−N [k log2 k + (1− k) log2(1− k)] .

After numerical evaluation we obtain

f(N) < −1.2745 + 1.1604 p+ 1
2 log2 N + 0.9499556N.

For convenience, let us introduce the functions

f1(N, p) = −1.2745 + 1.1604 p+ 1
2 log2 N + 0.9499556N, f2(N, p) = 1.2 p+ 0.95N.

We then consider their difference

d(N, p) = f2(N, p)− f1(N, p) = 1.2745+(1.2−1.1604)p− 1
2 log2 N + (0.95−0.9499556)N

This function is increasing in both p and N for N > 14,000. Moreover,

d(14,000; 200) = 1.2745 + 0.0396×200− 1
2 log2(14,000) + 0.0000444× 14,000 > 2.9 > 0.

Hence, whenever N ≥ 22× 638 > 14,000 and p > 200, the following upper bound holds:

⌈f(N)⌉ < 1.2 p+ 0.95N.
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8.7 Conclusion

According to the corollary established in Section 8.4, if v0 is the minimal value along an orbit
associated with a transition list in the set Up(N, v0), then at least the first p + 1 values of the
orbit—namely v0, v1, . . . , vp—satisfy the following properties:

� For every 0 ≤ n ≤ p, the value vn is itself a minimal value for a transition list belonging to the
set Up2p(N, v0), as defined in Section 8.4;

� In particular, each of these values lies in the interval:

vn ∈ [v0, 2pv0[ for all 0 ≤ n ≤ p.

This ensures that the set Up2p(N, v0) effectively captures at least the first p+1 distinct solutions
of the associated problem.

Moreover, for all thresholds v0 = 2α with α ≥ 20, and for every N ≤ cα, the sufficient condition
of Theorem 7.4 remains satisfied. As a consequence, the list JGL2p(N, v0) coincides with the shifted
version of the canonical list:

JGL2p(N, v0) = 02p Ceil(N − 2p).

This equality confirms that, up to N ≤ cα, the structural behavior of the filtered lists JGL2p

remains entirely predictable and independent of v0.
Moreover, we have shown that if n0 = 2f(N) denotes the number of transition lists of Up2p(N, v0),

then for all N satisfying 14,000 < N ≤ cα and 200 < p < 0.05N , one has

⌈f(N)⌉ ≤ 1.2 p+ 0.95N.

Furthermore, by Remark 4.3, the Random List Theorem also applies to the set Up2p(N, v0).

9 Proof of the Collatz Conjecture

Remarque 9.1 (Equivalent Statements of the Collatz Conjecture). The Collatz conjecture (also
known as the 3x + 1 conjecture or the Syracuse problem) admits several equivalent formulations,
each highlighting a different aspect of the conjectured dynamical behavior.

The conjecture is equivalent to the following three statements:

(1) (Convergence to 1)
For every v0 > 1, there exists an integer n ≥ 0 such that vn = 1.

(2) (Strict Descent)
For every v0 > 1, there exists n ≥ 1 such that vn < v0.

(3) (Absence of Non-Trivial Cycles and Divergence)
The sequence (vn) admits no cycles other than the trivial cycle {1, 2}, and there exists no v0
such that (vn) diverges (i.e., tends to +∞).

Each of these statements captures a key facet of the expected behavior of the sequence (vn): state-
ment (1) expresses convergence, (2) ensures the absence of strictly stationary trajectories above
1, and (3) excludes both non-trivial periodic behavior and divergence. Their equivalence is well
established in the literature (see, for example, Lagarias [7]).

Proof. The Collatz conjecture has been verified numerically for all initial values v0 ≤ 268 as of
January 1st, 2025.

We propose an inductive proof, based on the following three statements, assumed true for all
values strictly less than v0 = 2α:

(i) There exists no non-trivial cycle whose minimum value is strictly less than v0.

(ii) No orbit starting from a value < v0 diverges.

(iii) No orbit starting at W0 ≤ v0 reaches a cycle whose minimum is v0.

The argument relies on the Random List Theorem (see Section 4) and ultimately reduces to a
counting problem.
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Base case. The conjecture holds for all v0 ≤ 2α0 with α0 ≤ 68.
Several values of α0 ∈ {20, 22, 48, 68} will be used throughout the proof, depending on the context.
Thus, assertions (i)–(iii) are satisfied at this level.

Inductive step at v0 = 2α. Let α > α0. We assume the validity of (i)–(iii) for all values < v0,
and aim to establish them at v0.

A possible counterexample must fall into one of the two following categories:

(a) A non-trivial cycle whose minimal value is exactly v0;

(b) A divergent orbit beginning at v0.

By the induction hypothesis, no cycle or divergence can occur for a value < v0.
Let N = cα0

. We will prove that v0 cannot belong to a trajectory in Up(N, v0), which suffices to
exclude both cases (a) and (b), because:

� Any cycle with minimum value v0 must have length strictly greater than N ;

� Any divergent orbit starting from v0 would need to belong to Up(N, v0) for all N .

Assertion (iii) is particularly important: we must ensure that the initial value is indeed the
minimum over the first N terms of the orbit. If some W0 < v0 led to a cyclic orbit with v0 as
its minimum, we would need to exclude the corresponding transition lists, as they would represent
neither a length-N cycle nor divergence; yet W0 would be the minimum of its orbit, invalidating the
reasoning.

Such a situation does not occur here: the value 1 is the smallest possible and is the minimum of
the trivial cycle {1, 2}. No transition list needs to be excluded. Thus, assertion (iii) is automatically
verified as long as no additional cycle exists.

As an illustration, consider the extended variant vn+1 = 3vn+5
2 for odd vn. In this case, the orbit

of v0 = 3 reaches the cycle {19, 31, 49, 76, 38} even though 3 < 19. This orbit is called pre-cyclic,
and the corresponding transition lists must be excluded. Nothing similar occurs in our setting.

Since N > α, we are only concerned with minimal solutions of the trajectories. Any non-minimal
solution must be built from a minimal one, and its value is necessarily greater than 2N .

� Method 1: Based on the structure of the lists JGL(N, v0) (see Section 7.8). The cycle or di-
vergence is identified by the minimal value v0. We apply the Heuristic Approach to Establishing
the Existence of Solutions (see 4.4) to show that no solution is possible.

In this case, we choose α0 = 20, and then cα ≥ ⌈285α⌉ and ⌈f(N)⌉ < 0.953N .

We set n = α (since v0 = 2α), and compute the gap:

e = n−N + ⌈f(N)⌉ < α− 285α+ 0.953 · 285α = −12.395α.

As soon as α > 20, we get e < −247.9 ≪ −7, and thus the heuristic approach implies that no
solution exists. Although this method is heuristically well motivated, it lacks a full theoretical
justification.

Assuming use of the heuristic approach, no trajectory starting from v0 = 2α is compatible
with the existence of a non-trivial cycle or a divergent orbit. This suffices to validate the three
assertions of the induction hypothesis at rank v0.

This method relies solely on a property that has been numerically verified, but not formally
proven, and therefore carries no mathematical weight in a strict sense. However, the encour-
aging results it yields serve as a motivation and foundation for the following method, which is
mathematically rigorous.

� Method 2: Based on the lists JGL2p(N, v0) (see Section 8.7). Here, the cycle or divergence
is identified by the p values v0, v1, . . . , vp of the orbit for which v0 is the minimum. The set
Up2p(N, v0) is considered, and we show that the number of possible solutions is strictly less
than p+1, which leads to a contradiction. This method lies on the Random List Theorem and
thus constitutes a fully satisfactory proof from a formal standpoint. Several values of p and
α0 will be used throughout the proof, depending on which part (CLT or Berry–Esseen) of the
theorem is applied and on the desired probability threshold required to obtain a contradiction.

We will use values of α0 ∈ {22, 48, 68} to ensure prior verification of the conjecture up to 2α0 .

For v0 = 2α, depending on the chosen value of α0, we will select values of N equal to the
corresponding lower bounds of cα, namely ⌈638α⌉, ⌈2,017,000α⌉, and ⌈1,599,245,000α⌉.
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We fix p ≤ 0.05N and consider the first p+1 values of the orbit associated with the first N = cα
steps. Since each vi satisfies vi ∈ [v0, 2

pv0[ for 0 ≤ i ≤ p, we apply the theorem with n = α+ p,
accounting for the logarithmic scale (base 2). Under these conditions, we expect to find at least
p+ 1 minimal solutions belonging to transition lists in the set Up2p(N, v0).

Application of the Random List Theorem :

We compute:
e = n−N + ⌈f(N)⌉,

and we have the following upper bound:

e < n+ 1.2 p− 0.05N.

– Using the Central Limit Theorem (CLT):
Let z = 4, so that ε = 1− Φ(4) ≈ 3.2× 10−5.
According to the theorem, if e ≤ 6, then

Rn < 64 + 8 · z = 96,

with probability at least 1− ε.
To obtain a contradiction, we compute e for a value of p + 1 significantly larger than 96,
aiming to reach a regime where e ≪ 6.

* For α0 = 22, we apply the theorem with

α ≥ 22, n = α+ p, N = ⌈638α⌉, 200 < p = 300 < 0.05×N.

Substituting into the expression for e, we obtain an upper bound that is strictly de-
creasing in α:

e < 2.2 p− 30.9α < 660− 679.8 = −19.8 < 6.

According to the Random List Theorem, such a value of e implies that the number of
solutions is strictly less than 96. However, to generate a cycle or divergence, we would
require at least p+ 1 = 301 minimal solutions below 2n.
This leads to a contradiction: under the binomial distribution governing Rn, we cannot
have more than 96 values with probability greater than 1 − ε, yet we require at least
301.
Therefore, we conclude that the recurrence hypothesis holds at level v0 = 2α.

* For α0 = 48, we apply the theorem with

α ≥ 48, n = α+ p, N = ⌈2,017,000α⌉, p = 2,000,000 < 0.05N.

Substituting into the expression for e, we obtain an upper bound that is strictly de-
creasing in α:

e < 2.2 p− 100,849α < 4,400,000− 4,840,752 = −440,752 ≪ 6.

This again results in a contradiction, as the number of required solutions greatly exceeds
the theoretical upper bound: p+ 1 = 2,000,001 ≫ 96.
The discrepancy is sufficiently large to allow for a safe and reliable application of the
Berry–Esseen inequality.

– Using the Berry–Esseen inequality:

* For α0 = 48, the previous computation with p = 2,000,000 yielded a value of e <
−440,752 ≪ 6 < 20.
Given that 2,000,001 ≫ 1,052,383, the Random List Theorem, together with the bino-
mial distribution governing Rn, yields a formal contradiction — rigorously confirmed
via the Berry–Esseen inequality with probability at least 1− ε, where ε = 10−3.

* For α0 = 68, we apply the theorem with

α ≥ 68, n = α+p,N = ⌈1,599,245,000α⌉, p = 2,000,000,000 < 0.05N.

Substituting into the expression for e, we obtain an upper bound that is strictly de-
creasing in α:

e < 2.2 p− 79,962,248α < −1,037,432,864 ≪ 6 < 26.
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Given that 2,000,000,001 ≫ 67,144,024, the Random List Theorem, together with the
binomial distribution governing Rn, yields a formal contradiction — rigorously con-
firmed via the Berry–Esseen inequality with probability at least 1− ε, where ε = 10−4.
Therefore, by a proof by contradiction, we conclude that the recurrence hypothesis
must hold at level v0 = 2α.

In this Method 2, the application of the theorem ensures complete formal justification.
Ultimately, verifying the conjecture up to 248 is sufficient to obtain a formal contradiction, even

when using the Berry–Esseen inequality.
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