Conjecture of Syracuse

Key steps

of the proof of

Jacques BALLASI

Full proof available on the website

https://www.bajaxe.com

Standard Syracuse sequence: u

```
\begin{cases} u_0>0\\ u_{n+1}=u_n/2 \quad \text{if} \quad u_n \quad \text{is} \quad \text{even (transition of type 0)}\\ u_{n+1}=3u_n+1 \quad \text{if} \quad u_n \quad \text{is} \quad \text{odd (transition of type 1)} \end{cases}
```

Reduced Syracuse sequence: v

As if u_n is odd, u_{n+1} is even by construction, it is interesting to make the following transition directly.

The reduced Syracuse sequence brings together this transition.

```
\begin{cases} v_0>0\\ v_{n+1}=v_n/2 \quad \text{if} \quad v_n \quad \text{is} \quad \text{even (transition of type 0)}\\ v_{n+1}=(3v_n+1)/2 \quad \text{if} \quad v_n \quad \text{is} \quad \text{odd (transition of type 1)} \end{cases}
```

Remark: The type of transition corresponds to the value of the least significant bit (bit 0) of v_n . Bit 0 contains the parity information of v_n .

Remark: In the following, we will focus solely on the sequence \boldsymbol{v}

Conjecture of Syracuse

Statement : For any value of v_0 , there exists n such that $v_n=1$

Remark : The conjecture has been verified for $v_0 \le 2^{68}$; for the proof, a verification up to 2^{28} is sufficient.

Main idea: Instead of focusing on the orbit generated from v_0 (the set of values v_n), which is chaotic and for which no mathematical modeling is suitable, we will study the statistical distribution of minimal solutions for a set of random transition lists (the set of "transition type" or "parity vector") using standard and robust mathematical tools.

Result: The apparent chaos transforms into a continuum.

Transition list L(N,m,d) for \boldsymbol{v}

Definition: A transition list is a word composed of 0s and 1s corresponding to the type of each transition.

We set:

- d as the number of "type 0" transitions ("divisions")
- m as the number of "type 1" transitions ("multiplications")
- $\bullet N = m + d$

We denote by m_n or $m_{n,L}$ the number of "type 1" transitions in the sublist of the first n transitions of a list L(N,m,d). Similarly, we denote by d_n or $d_{n,L}$ the number of "type 0" transitions in the sublist of the first n transitions of a list L(N,m,d).

Partial order: We define a partial order relation on the transition lists $L(N\,,m\,,d)$ as follows:

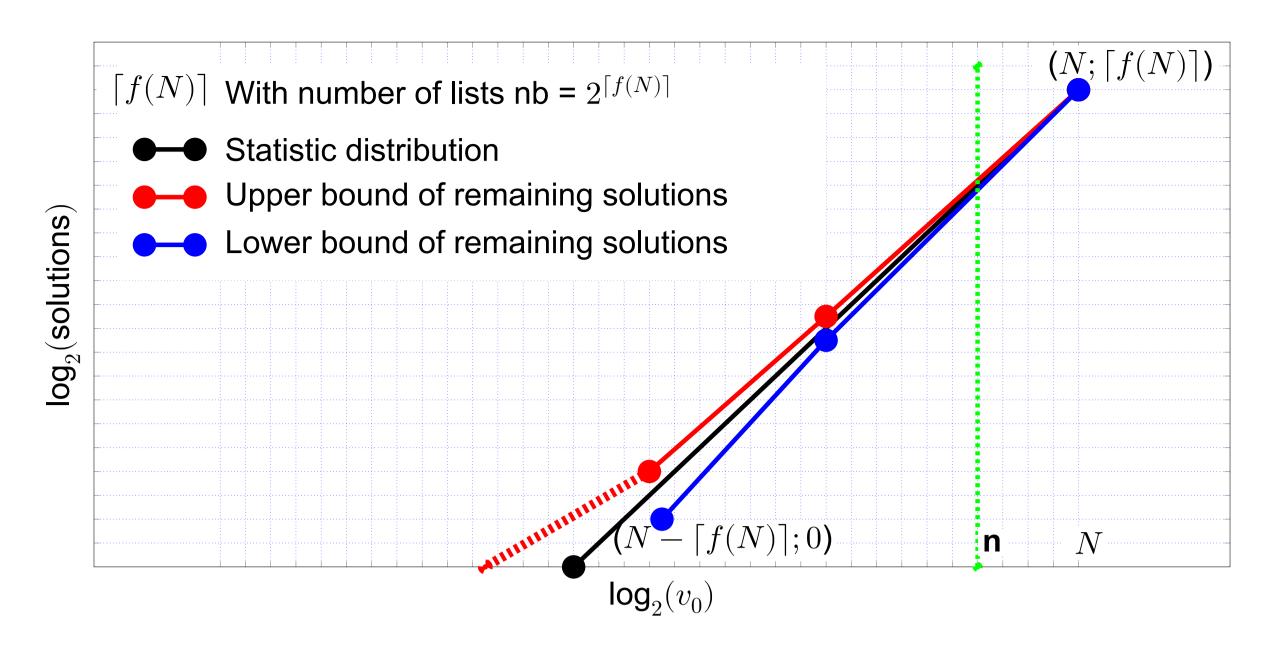
- $L_1(N\ , m_1\ , d_1) \le L_2(N\ , m_2\ , d_2) \iff \forall\ 0 \le n \le N$, we have $m_{n,L_1} \le m_{n,L_2}$, meaning that the number of "type 1" transitions in the sublist of length n of list L_1 is less than that of the sublist of length n of list L_2 , and this holds for all sublists.
- $L_1(N\ , m_1\ , d_1) \geq L_2(N\ , m_2\ , d_2) \iff \forall\ 0 \leq n \leq N$, we have $m_{n,L_1} \geq m_{n,L_2}$, meaning that the number of "type 1" transitions in the sublist of length n of list L_1 is greater than that of the sublist of length n of list L_2 , and this holds for all sublists.

Solutions of a list L(N, m, d)

Theorem:

- For each list L(N,m,d), there exists a unique (minimal) solution $s_0 \in [0;2^N[$ that follows this trajectory. With the convention 0 solution of $N \times 0^{\circ}$ instead of 2^N
- The infinite number of other solutions are of the form $s_0 + a \times 2^N$ with $a \geq 0$ since only the N least significant bits determine the first N transitions

Random List Theorem



Let a set of $nb=2^{f(N)}$ transition lists of length N, independently and randomly generated. Each list $\mathcal{L}(N,m,d)$ may contain an arbitrary proportion m/N of type 1 transitions, without any specific constraint.

For a given integer n < N, let R_n denote the number of minimal initial values $v_0 < 2^n$ among the set of transition lists.

Then R_n follows the binomial distribution: $R_n \sim \text{Bin}\left(2^{f(N)}, \frac{1}{2^{N-n}}\right)$ This distribution follows directly from the independence of the lists and the successive filtering mechanism applied to the last N-n transitions.

Define: $e := n - N + \lceil f(N) \rceil$

(i) Bounds via the Central Limit Theorem.

Let $4 \le z \le 6$ be a real number. Then, with probability at least $1-\varepsilon$, where $\varepsilon=e^{-z^2/2}$:

-if
$$e \geq 7$$
, then $R_n \geq 64 - 8\sqrt{2}z$,

-if
$$e \le 6$$
, then $R_n \le 64 + 8z$.

(ii) Bounds via the Berry–Esseen inequality.

For any $\varepsilon < 10^{-3}$, define: $K := \left\lceil 2 \cdot \log_2\left(\frac{0.56}{\varepsilon}\right) \right\rceil + 1$

Then, with probability at least $1 - \varepsilon$, we have:

—if
$$e>K$$
, then $R_n>\min:=2^{K-1}-\sqrt{2\ln(1/\varepsilon)}\cdot\sqrt{2^K}$,

—if
$$e < K$$
, then $R_n < \max := 2^K + \sqrt{2 \ln(1/\varepsilon)} \cdot \sqrt{2^K}$.

For $\varepsilon=10^{-3}$, we have K=20 and $\max=1{,}052{,}383$.

Heuristic approach: there is no solution if e < -7.

Set of lists Up(N, v_0)

Definition: Up(N, v_0) is the set of transition lists for which v_0 is the minimum of the orbit of the first N values or for all $0 < n \le N, v_n \ge v_0$

Goal:

- Find the minimal list (and thus a lower bound of m)
- Find an upper bound on the number of lists
- Apply the "Random List Theorem" to prove that no solution exists (fragile zone)

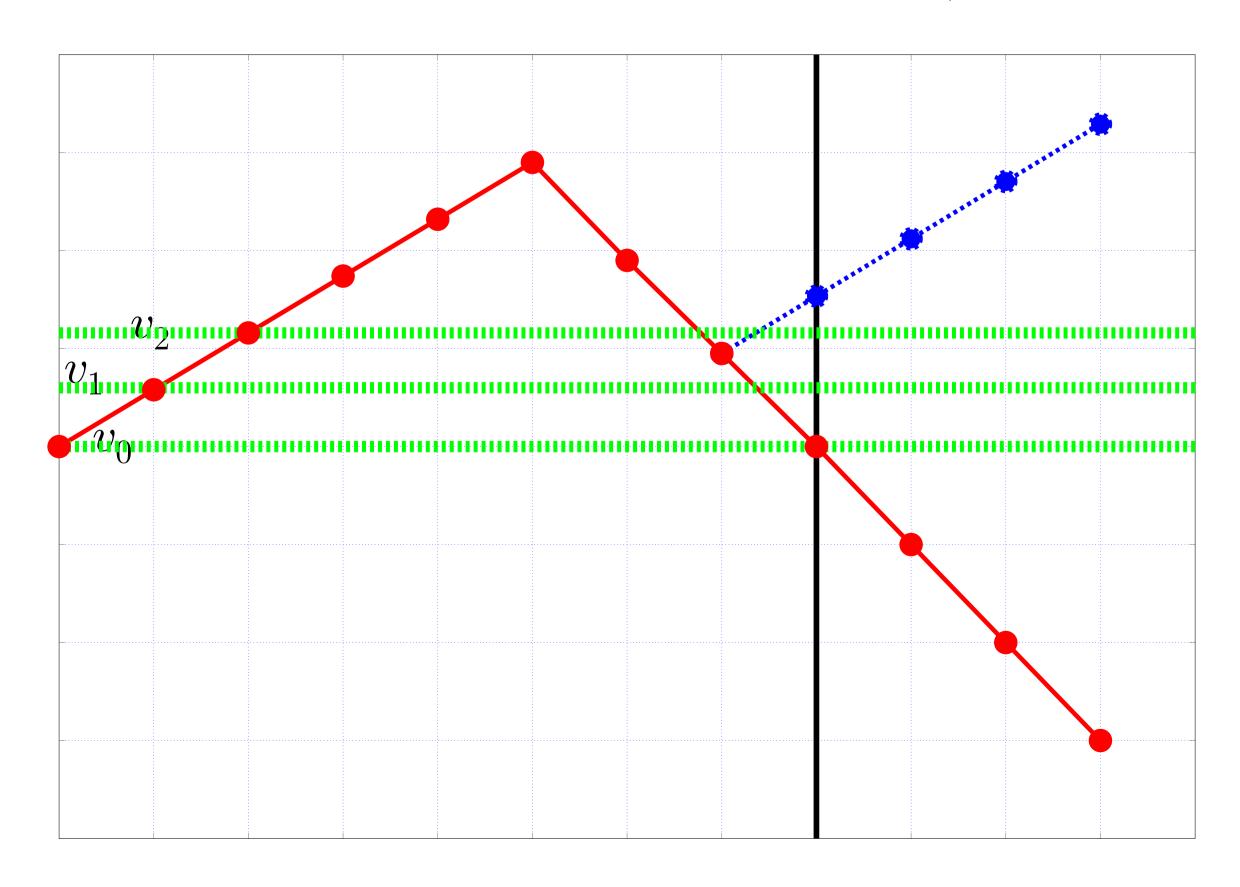
Set of lists Up' $_{2p}(N, v_0)$

Idea: Isolate at least p>30 other values of the trajectory starting from v_0 to apply the "Random List Theorem" to obtain a contradiction in a proper zone.

Definition: Up' $_{2p}(N,v_0)$ is the set of transition lists for which, for all $0 < n \le N, v_n \ge v_0/2^{2p}$

This allows filtering at least p+1 values of the trajectory if for all $0 < n \le N, v_n \ge v_0$ because for all $0 , we have <math>v_{N+p}/v_p \ge 1/2^{2p} \times v_N/v_0$ and therefore $v_{N+p} \ge 1/2^{2p}v_p$

This comes from the fact that $v_1 < 2v_0$ and $v_{N+1} \ge v_N/2$



Approximated reduced Syracuse sequence : $v^{'}$

Let's define the approximated sequence by replacing the term $3v_n+1$ by $3v_n$

It is immediate that the approximation makes sense for values of v_0 that are large enough and values of n that are low enough.

We ensure that the transitions from $v^{^{\prime}}$ are identical to those of v

$$\begin{cases} v_0^{'}=v_0>0\\ v_{n+1}^{'}=\frac{v_n^{'}}{2} \text{ if } v_n \text{ is even (transition of type 0)}\\ v_{n+1}^{'}=\frac{3v_n^{'}}{2} \text{ if } v_n \text{ is odd (transition of type 1)} \end{cases}$$

Then $v_{n}=v_{n}^{^{\prime }}+r_{n}$ and

$$\begin{cases} r_0=0\\ r_{n+1}=r_n/2 & \text{if}\quad v_n \quad \text{is}\quad \text{even (transition of type 0)}\\ r_{n+1}=(3r_n+1)/2 & \text{if}\quad v_n \quad \text{is}\quad \text{odd (transition of type 1)} \end{cases}$$

We have:

- $v_N=3^m/2^N\times v_0+r_N$: Of course, v_0 depends on L(N,m,d) but we now have a factor $3^m/2^N$ that depends only on the global characteristics (N,m,d) of the transition list and a term r_N that does not depend on v_0 but only on the composition of the list L(N,m,d). This is a first step towards using the "Random List Theorem".
- r_N is all the greater when the "type 0" transitions appear at the beginning of the list L(N,m,d).

 r_N is maximum for the list L = d × "0" + m × "1" and equals $r_N=(3/2)^m-1,$ which is large.

 r_N is minimum for the list L = m × "1" + d × "0" and equals $r_N=3^m/2^N-1/2^d$, which can be very small.

• We have formulas to find r_N for $L=\sum\limits_{i=1}^k p_i\times L_i+L_{k+1}$ where $p_i\in\mathbb{N}$

We focus on $\operatorname{Up}(N,v_0)$ hoping to have r_N sufficiently small.

Transition list Ceil(N)

Definition: Ceil(N) is the transition list such that for all $0 \le n \le N$, we have $m_n = \lceil ln(2) \times n/ln(3) \rceil$ where the function ln is the natural logarithm and m_n is the number of "type 1" transitions in the first n transitions.

We have:

- Ceil(N) \in Up(N,v_0) because $r_n\geq 0$ and $m_n=\lceil ln(2)\times n/ln(3)\rceil\geq ln(2)\times n/ln(3)$, hence $v_n=v_n'+r_n>v_n'=3^{m_n}/2^n\times v_0\geq v_0$
- $r_N \approx 0.24048 \times 3^m/2^N \times m$ is of the order of magnitude of m by studying the patterns of Ceil(N).

Transition list $JGL(N, v_0)$

Definition: It is the minimal list of Up(N, v_0)

Property: $JGL(N, v_0) = Ceil(N)$ as long as r_n does not offset an additional "type 0" transition (and then Ceil(N) maximizes r_N among the elements of $Up(N, v_0)$ since the "type 0" transitions are placed at the head of the list).

To be able to add an additional "type 0" transition, it would therefore be necessary that:

$$\begin{array}{lll} v_{N+1} = v_N/2 = 3^m/2^{N+1} + r_N/2 \geq v_0 &\iff v_0 \leq (2^N \times r_N)/(2^{N+1}-3^m) = \mathrm{Vmax}(N) \end{array}$$

The records of Vmax(N) are achieved for the fractions m/d, which are the best approximations of X = ln(2)/(ln(3) - ln(2))

Property: For $v_0=2^{\alpha}$ with $\alpha\geq 20$, we have $\mathrm{JGL}(N,v_0)=\mathrm{Ceil}(N)$ for all $N\leq c_{\alpha}=\lceil 285\alpha\rceil$.

Therefore, there is no cycle of length strictly less than c_{α} , the conjecture having been verified up to 2^{20} .

Method 1

It can be shown that the $Random\ List\ Theorem$ can be applied to the non-random set $Up(N,v_0)$.

Here we use a heuristic remark which allows us to assume that there is no solution when e<-7.

We prove by induction the Syracuse conjecture, which is equivalent to: For any value $v_0 > 1$, there exists n such that $v_n < v_0$

The property holds for $v_0 < 2^{20}$

We show that a contradiction arises, that no solution $v_0=2^{\alpha}$ exists in $Up(c_{\alpha},v_0)$.

The advantage of having studied JGL is to have the minimum of m, which is $m_{min}=\lceil ln(2)\times N/ln(3)\rceil$

We then very roughly upper bound the number of lists in $\operatorname{Up}(N,v_0)$ by $1/N \times \sum\limits_{m=m_{min}}^{N} \binom{N}{m}$, as if there were no constraints on the transition lists, and we consider only the list that gives the minimum v_0 of the orbit among the N circular permutations.

Again, we make a very loose upper bound by bounding each term by the largest $\binom{N}{m_{min}}$ and use Stirling's formula for factorial approximations.

We then find the cardinality of $Up(N, v_0) = nb = 2^{f(N)} < 2^{0.953N}$.

We apply the "heuristic remark" with $\alpha>20$, $n=\alpha$, and $N=\lceil 285\alpha \rceil$ and look for a solution.

$$e = n - N + f(N) < \alpha - 285\alpha + 0.953 \times 285\alpha = -12.395\alpha < -12.395 \times 20 < -247.9 < -7$$
 (e is a decreasing function of α)

We could therefore conclude that there is no solution and thus that induction property holds at rank v_0 but this method is mathematically unsatisfactory.

Consistency with the "glides" records

We test the Heuristic Approach to Establishing the Existence of Solutions of the Random List Theorem.

Here, we consider the list of "high-altitude flight" records maintained by Eric Roosendaal, which appear to be extreme outliers.

In fact, we observe that the order of magnitude of the g_k values is completely normal (|e|<6 for each g_k), since on average, we have $|e|\approx\log_2{(3)}$ —that is, g_k differs from the "central" value by only a factor of 3.

Here is the table of results obtained for the current 34 values of g_k , sorted by increasing value of e (the most spectacular value of g_k listed first due to its smallness)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9371 0.8471 0.931	-5.875 -4.268
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-4.268
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.931	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-4.206
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9381	-2.493
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9246	-2.444
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9255	-1.728
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9342	-1.674
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9347	-1.646
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8678	-1.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9349	-0.993
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9383	-0.95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9277	-0.943
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.3962	-0.83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9272	-0.753
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9384	-0.741
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5286	-0.492
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9326	0.066
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9373	0.182
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.9184	0.271
16 $26716671 \approx 2^{24.671}$ 24.6714862982.9391335916232394×108215 $20638335 \approx 2^{24.299}$ 24.2994762926.024579568492399×10806 $35655 \approx 2^{15.122}$ 15.1222201352.1289601394550887×10365 $10087 \approx 2^{13.3}$ 13.31711057.89573228439857×1027	0.9119	0.372
1520638335 $\approx 2^{24.299}$ 24.2994762926.024579568492399×10 80 0635655 $\approx 2^{15.122}$ 15.1222201352.1289601394550887×10 36 0510087 $\approx 2^{13.3}$ 13.31711057.89573228439857×10 27 0	0.9256	0.55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.9193	0.625
$5 10087 \approx 2^{13.3}$ $13.3 171 105 7.89573228439857 \times 10^{27}$ 0	0.919	0.644
	0.8939	0.801
	0.8826	0.973
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	0.9202	1.195
$oxed{24}$ $oxed{898696369947} pprox 2^{39.709}$ $oxed{39.709}$ $oxed{897}$ $oxed{550}$ $oxed{1.430402916945964} imes 10^{154}$ $oxed{0}$	0.9311	1.802
$9 381727 \approx 2^{18.542} \qquad \qquad 18.542 282 173 \qquad 1.1355686345484767 \times 10^{47} 0$	0.9035	1.856
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	0.9145	1.923
$7 270271 \approx 2^{18.044}$ $18.044 267 164 3.3605035857724012 \times 10^{44}$ 0	0.9019	1.958
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.935	2.039
8 $362343 \approx 2^{18.467}$ 18.467 269 165 6.141864053002392× 10^{44} 0	0.9017	2.251
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	0.904	2.356
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	0.9058	2.724

Mean of $|e| = 1.5845294117647057 \approx log_2(3)$

What seems chaotic in fact reveals an underlying continuum.

Transition list $JGL_{2p}(N, v_0)$

Definition valid only for $v_0 \in \mathsf{Up}(N,v_0)$:

- $JGL_{2p}(N, v_0) = 2p \times "0" + JGL(N 2p, v_0)$
- ${\rm Up}_{2p}(N,v_0)$ is the set of lists greater than ${\rm JGL}_{2p}(N,v_0)$ Properties:
- The first p values of the orbit of v_0 are within the interval $[v_0; 2^p v_0[$
- $m_{JGL_{2p}(N,v_0)}=\lceil ln(2) imes(N-2p)/ln(3)
 ceil$ for $N\leq c_{lpha}=\lceil 2{,}017{,}000 imeslpha
 ceil$ with $lpha\geq 48$, and $v_0=2^{lpha}$

Method 2

"Method 2" is identical to "Method 1", but:

- The set of lists is ${\rm Up}_{2p}(N,v_0)$ whose cardinality is $n_0=2^{f(N)}$ with $f(N)<1.2\,p+0.95\,N$
- $\bullet\,m_{\min} = \lceil \ln(2) \times (N-2p)/\ln(3) \rceil$
- We take $p=2{,}000{,}000$, so we should find at least 2,000,001 elements of the orbit
- We apply the "Random List Theorem" in a zone that is not questionable

We apply the "Random List Theorem" with $\alpha > 48$ and p = 2,000,000, thus with $n = \alpha + p$ and $N = \lceil 2,017,000\alpha \rceil$, and we should find at least p + 1 = 2,000,001 solutions.

 $e=n-{\sf N}+f({\sf N})<2.2p-100,\!849\alpha$ which is a decreasing function of α

So $e < -440,800 \ll 20$, therefore according to the Theorem, there are fewer than 1,052,383 solutions.

We can thus conclude that there are fewer than 2,000,001 solutions (since 2,000,001 > 1,052,383), which gives a contradiction, and the entire inductive property is verified at rank v_0 .

This time, the Theorem is used in a zone that is not questionable.