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Abstract

The preprint arXiv:2107.11160v4, entitled “Is the Syracuse Falling Time Bounded by 12?”, authored by
Shalom Eliahou, Jean Fromentin, and Rénald Simonetto, presents a collection of conjectures and questions
concerning the falling time in the standard iteration of the Syracuse sequence (also known as the 3x + 1
sequence).

In this note, we show that the set of conjectures formulated in that work can be addressed in a unified
manner by applying the Random List Theorem.

This theorem provides a decisive tool for analyzing the dynamics of the Syracuse sequence. In particular,
it allows one to give formal answers to questions concerning the falling time and provides a systematic
method for studying such properties.

It is important to note that the empirical regularities motivating the conjectures originate from a sta-
tistical bias inherent in the observable data set, which corresponds to the range of integers less than 268.
Beyond this bound, asymptotic behaviors emerge that contradict the initial regularities, even though the
underlying dynamical rules remain unchanged.

In particular, we establish the theoretical existence of counterexamples to several of the conjectures
proposed in arXiv:2107.11160v4. However, due to current computational limitations, it is not possible to
exhibit such counterexamples explicitly.

1 Introduction

The study of the dynamical behavior of the Syracuse sequence (also known as the 3x+1 iteration) continues
to generate significant interest in mathematics. One recent approach focuses on analyzing the falling time
of an integer n, which is defined as the number of iterations required for the sequence to produce a value
less than n.

In this context, the document SE [3], authored by Shalom Eliahou, Jean Fromentin, and Rénald Simon-
etto, proposes a collection of precise conjectures based on numerical observations performed up to 250. These
conjectures concern, in particular, the integers that achieve maximal falling times within specific intervals,
as well as the structure of their trajectories under the iteration of the function T .

The present article provides answers to these conjectures by relying exclusively on the Random List The-
orem. This theorem enables one to establish the systematic existence of integers whose behavior contradicts
the regularities observed at small scales in the Syracuse sequence.

The method reduces the problem to an explicit enumeration of admissible transition lists for each case
under consideration. In the present context, these enumerations are significantly more complex than those
involved in the proof of the conjecture itself [1], due to the specific cases studied in [3].

In particular, we show that Conjectures (5.1) and (5.2), as formulated in [3], are either incorrect or can
be improved. Moreover, we provide detailed answers to the questions raised in Section 3.2, as well as those
stated in the title, on page 8, on page 9, and in the final challenge of that document.

For each of these statements, we highlight the source of the empirical bias that led to their formulation.
This bias results from the intrinsic limitations of the numerical data, which is restricted to integers less than
268. We show that, in the asymptotic regime, the observed tendencies reverse and the conjectures cannot
be maintained.

The counterexamples predicted by our analysis are purely theoretical: their existence is proved, but no
explicit instance can currently be exhibited due to computational limitations.

For the sake of a self-contained exposition, the results and theorems in Sections 2, 3, 4, 5, and 6 have
been reproduced from the unpublished manuscript “A Combinatorial Proof of the Syracuse Conjecture Using
Transition Lists” [1], authored by the present author.

The reader is also invited to consult the document SE [3], which the present article addresses in detail.
In Section 7, we address the questions and conjectures involving sft(n).
In Section 8, we consider those involving ft(n).

*jacques.ballasi@bajaxe.com
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This article constitutes a formalized synthesis of various communications by the author concerning the
document [3] (denoted SE hereafter). These include the email sent to the authors on December 3, 2024,
the presentation given on December 18, 2024, at the LMPA laboratory in Calais (France), and subsequent
exchanges.

Finally, a complementary HTML+JavaScript file [2] allows the reader to reproduce all the computations
presented both in the document SE and in the present article.

2 Definitions

2.1 Reduced Syracuse Sequence: (vn)

vn+1 =


vn
2
, if vn is even (type 0),

3vn + 1

2
, if vn is odd (type 1),

with v0 > 0.

Remarque 2.1. The parity of vn still determines the type of transition. While the sequence could be
written as vn = T (n)(v0), we retain the recurrence form.

2.2 Transition List L(N,m, d)

A transition list of length N is a sequence of N transition types ti ∈ {0, 1}, representing type 0 and type 1
transitions, respectively. It is denoted:

L(N,m, d) = (t0, t1, . . . , tN−1),

where m is the number of type 1 transitions, and d = N −m is the number of type 0 transitions.

� m: total number of type 1 transitions (multiplications);

� d: number of type 0 transitions (divisions by 2 );

� N = m+ d: total length of the transition list.

For each prefix of the list of length n ≤ N , we define:

� mn =
∑n−1

i=0 ⊮{ti=1}, the number of type 1 transitions among the first n elements;

� dn = n−mn, the number of type 0 transitions among the first n elements.

Exemple 2.2. For v0 = 7, the sequence is:

7
1−→ 11

1−→ 17
1−→ 26

0−→ 13.

Then: L(4, 3, 1) = (1, 1, 1, 0).

Remarque 2.3. The list L(N,m, d) is also called a parity vector, since each ti corresponds to the least
significant bit of vi.

2.3 Partial Order on Transition Lists

We define a partial order ≼ on transition lists of length N by comparing the cumulative number of type 1
transitions at each prefix of the list.

Let L1 and L2 be two transition lists of length N . We write:

L1 ≼ L2 if and only if for all 0 ≤ n ≤ N, mn,L1 ≤ mn,L2 ,

where mn,L denotes the number of type 1 transitions among the first n elements of list L.
This relation is a partial order: it satisfies reflexivity, antisymmetry, and transitivity.
We also define the associated strict order:

L1 ≺ L2 if and only if for all 0 ≤ n ≤ N, mn,L1 < mn,L2 .

Remarque 2.4. This is not a total order. There may exist two lists L1 and L2 such that neither L1 ≼ L2

nor L2 ≼ L1 holds. In such cases, the lists are said to be incomparable under this relation. This situation
arises when the distribution of type 1 transitions differs in position but not in number.

Exemple 2.5. Let L1 = (1, 0, 1) and L2 = (0, 1, 1). The cumulative sums of type 1 transitions yield:

(m1,m2,m3) = (1, 1, 2) for L1, and (0, 1, 2) for L2.

Thus, neither L1 ≼ L2 nor L2 ≼ L1 holds: the lists are incomparable.

Remarque 2.6 (Interpretation). This order reflects the temporal positioning of type 1 transitions: a list
that accumulates multiplications more slowly (i.e., later in the sequence) is considered ”smaller” in this
ordering.
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2.4 Solutions of a Transition List

We say that the initial or starting value v0

� follows the transition list LN ,

� realizes the transition list LN ,

� or is a solution of the transition list LN ,

if and only if the first N transitions of the reduced Syracuse sequence starting from v0 are exactly those
specified by LN .

We say that v0 is the minimal solution of LN if v0 < 2N . The existence of such a solution will be
established in Section 3.4.

2.5 Approximate Reduced Syracuse Sequence: (v′n)

We now introduce an approximate version of the reduced Syracuse sequence by neglecting the constant term
in the type 1 transition. Specifically, in place of the expression 3vn +1, we consider only 3vn. The resulting
sequence (v′n) is defined by the recurrence:

v′n+1 =


v′n
2
, if vn is even (type 0),

3v′n
2

, if vn is odd (type 1),

with v′0 = v0.

Remarque 2.7. This approximation is especially meaningful when the initial value v0 is large and the
number of steps n remains moderate. Crucially, the transition types of the approximate sequence v′ coincide
exactly with those of the original sequence v, since the parity (and thus the transition vector (ti)) is preserved.

However, the values of v′n may be non-integer, which introduces a discrepancy compared to the actual
sequence. To quantify this difference, we define a correction term rn such that:

vn = v′n + rn.

This decomposition will be used later to precisely analyze the divergence between the exact and approximate
sequences.

3 Binomial Distribution of Initial Values Below a Threshold

Théorème 3.1 (Binomial Distribution of Minimal Initial Solutions). Let nb ∈ N, and consider a set of
nb independent and distinct transition lists L1, . . . ,Lnb, each of length N . Assume each list L(N,m, d) is
random, with a proportion pL = m/N of type 1 transitions. Let k = N − n and Rk denote the number of
minimal initial solutions v0 < 2n = 2N−k associated with these nb lists.

Then, for any 0 < k < N − 10, the random variable Rk follows the binomial distribution:

Rk ∼ Bin(nb, 1/2k).

The proof of the theorem is broken down into several intermediate results, presented as lemmas in the
following subsections.

3.1 Lemma: the Probability that v1 is even is 1
2
for v0 ≥ 4

Lemme 3.2. Let v0 ≥ 4 be an integer chosen uniformly in the interval [2n, 2n+1) with n ≥ 2. Then the
parity of v1, defined by the reduced Syracuse iteration

v1 =

{
v0/2 if v0 ≡ 0 mod 2,

(3v0 + 1)/2 if v0 ≡ 1 mod 2,

the parity of v1 is uniformly distributed :

P(v1 ≡ 0 mod 2) = P(v1 ≡ 1 mod 2) =
1

2
.

Proof. Let us write the binary decomposition of v0:

v0 =
N∑

p=0

ap · 2p, with ap ∈ {0, 1}.

Case 1: v0 is even (a0 = 0)
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Then

v1 =
v0
2

=

N∑
p=1

ap · 2p−1 =

N−1∑
p=0

ap+1 · 2p.

The parity of v1 is given by a1. Since N ≥ 4, the bit a1 exists and is uniformly distributed in {0, 1}:

P(v1 even | v0 even) = P(a1 = 0) =
1

2
.

Case 2: v0 is odd (a0 = 1)
We have:

v1 =
3v0 + 1

2
=

1 + v0 + 2v0
2

.

Replacing v0 by its binary expansion:

v1 =
1 +

∑N
p=0 ap · 2p +

∑N
p=0 ap · 2p+1

2
=

N+1∑
p=0

a′
p · 2p.

The least significant bit a′
0 depends on:

a′
0 = (1 + a0 + a1) mod 2 = (1 + 1 + a1) mod 2 = a1.

As in the even case, the parity of v1 is determined by a1, which is uniformly random. Hence:

P(v1 even | v0 odd) = P(a1 = 0) =
1

2
.

Remarque 3.3. This lemma shows that the parity of v1 is exactly balanced as soon as v0 ≥ 4, i.e., when
the binary representation of v0 has at least two digits. This is an exact property, not an asymptotic estimate.

Some sources incorrectly state that this equiprobability only holds “in sufficiently large intervals.” For
instance, the May 2025 version of the French Wikipedia article on the Syracuse conjecture claims:

“the parity of the result is independent of that of v, if v is randomly chosen in a sufficiently large
interval.”

However, as the above proof shows, the property already holds perfectly for all v0 ≥ 4, without any asymp-
totic assumption.

It is also important to note that this equiprobability cannot be extended to subsequent values vn, since
the trajectory is deterministically correlated with v0. Assuming independence along the entire sequence is a
common error in probabilistic models of the Syracuse dynamics. While the lemma justifies local randomness
at the first step, caution is required when extending this reasoning to full orbits.

3.2 Lemma: Bijection between Transition Lists of Length N and Minimal
Initial Values v0 < 2N That Realize Them

Lemme 3.4. For every integer N ≥ 1, there is a bijection between:

� the set LN of binary transition lists (t0, . . . , tN−1) ∈ {0, 1}N ;

� and the set of initial values v0 < 2N so that the sequence (v1, . . . , vN ) generated by the reduced Syracuse
iteration follows the transition pattern (t0, . . . , tN−1).

Each transition list uniquely determines a minimal initial value v0 < 2N that realizes it. Furthermore, all
other values generating the same transition list are of the form:

v
(n)
0 = v0 + n · 2N , n ∈ N.

Remarque 3.5. This relies on extending the definition to include v0 = 0, which is then considered as the
minimal solution for all transition lists containing exactly N transitions of type 0 (and no transitions of
type 1), instead of assigning v0 = 2N .

Proof. The reduced Syracuse dynamics assigns to any integer v0 a transition list (t0, . . . , tN−1) defined by:

ti =

{
0 if vi is even,

1 if vi is odd,

where vi+1 = T (vi) with T the reduced Syracuse function.
We prove by induction on N that for each binary word of length N , there exists a unique minimal

v0 < 2N realizing it.
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Base case N = 1 There are two possible transition lists:

� t0 = 0 (even), realized by v0 = 0 (with the extension);

� t0 = 1 (odd), realized by v0 = 1.

Each transition bit is thus realized by a unique v0 < 2.

Inductive step Assume the result holds for lists of length N : for every LN = (t0, . . . , tN−1), there exists
a unique minimal value s0 < 2N realizing it.

Let LN+1 = (t0, . . . , tN ) be a list of length N + 1.
By the inductive hypothesis, the prefix (t0, . . . , tN−1) corresponds to a unique value s0 < 2N . Consider

the two candidate initial values:
v
(0)
0 = s0, v

(1)
0 = s0 + 2N .

Both share the same lower N bits and thus follow the same first N transitions. Let m be the number of
type 1 transitions among (t0, . . . , tN−1). Then, by recurrence1, their corresponding values at time N differ
by 3m:

v
(a)
N = sN + a · 3m.

We now determine which of the two values v
(a)
0 satisfies tN , by testing the parity of v

(a)
N :

� If sN ≡ tN (mod 2), choose a = 0;

� Otherwise, choose a = 1.

Thus, exactly one of the two values v
(0)
0 or v

(1)
0 matches the full transition list LN+1, and its value is

strictly less than 2N+1.

Infinitely many solutions Since adding 2N does not affect the first N transitions, any integer of the
form:

v
(n)
0 = v0 + n · 2N , n ∈ N,

also realizes the same transition list. Therefore, for each LN , there exists an infinite arithmetic progression
of initial values with a unique minimal representative in [0, 2N ).

Remarque 3.6 (On the precedence of the lemma). In the standard case, this lemma corresponds to results
previously established by Riho Terras (1976) [5] and C. J. Everett (1977) [4], as kindly pointed out to me
by Shalom Eliahou in a personal correspondence dated December 18, 2024.

These references were not identified in earlier versions of this document (prior to version 3.1.2), as the
original articles are written in English and adopt a different formalism.

That said, the main contribution of this section lies in the corollary that follows, which, to the best of
our knowledge, constitutes a new result within the specific framework developed here.

1Let us detail the first transition:
The value v

(a)
0 has the same parity as s0, corresponding to t0 ∈ {0, 1}.

� If t0 = 0, then s0 is even (since s0 follows LN ), and

v
(a)
1 =

v
(a)
0

2
=

s0 + a · 2N

2
=

s0

2
+ a · 2N−1 = s1 + a · 2N−1.

� If t0 = 1, then s0 is odd (since s0 follows LN ), and

v
(a)
1 =

3v
(a)
0 + 1

2
=

3(s0 + a · 2N ) + 1

2
=

3s0 + 1

2
+

a · 3 · 2N−1

2
= s1 + a · 3 · 2N−1.

The value v
(a)
1 has the same parity as s1, which corresponds to t1.

One can easily prove by induction that, for all 0 ≤ n ≤ N ,

v
(a)
n = sn + a · 3mn · 2N−n,

where mn denotes the number of type 1 transitions among the first n transitions of LN .
and for n = N :

v
(a)
N = sN + a · 3m.
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3.3 Corollary of Lemma 3.4: P(v0 < 2N−1) = 1
2
for Transition Lists of

Length N

Corollaire 3.7. Let N ≥ 1. Among all transition lists of length N , the probability that the minimal initial
value v0 satisfies v0 < 2N−1 is exactly

P(v0 < 2N−1) =
1

2
.

Proof. We consider only the minimal initial values v0 < 2N arising from the bijection of Lemma 3.4.
Given a list of length N , the construction extends a prefix of length N − 1 by one final bit tN−1. The

two candidates for v0 are:
v
(0)
0 = s0, v

(1)
0 = s0 + 2N−1.

Only one of these two values satisfies the final transition, depending on the parity of sN−1 and the bit
tN−1. The minimal representative v0 = s0 is selected if and only if:

(tN−1 = 0 and sN−1 is even) or (tN−1 = 1 and sN−1 is odd).

Assuming, as shown in Lemma 3.2, that P(sN−1 even) = 1
2
, and letting p denote the probability that

tN−1 = 1, we compute:

P(v0 = s0) = (1− p) · 1
2
+ p · 1

2
=

1

2
.

Hence, among all transition lists of lengthN , the minimal initial value v0 falls below 2N−1 with probability
exactly

P(v0 < 2N−1) =
1

2
.

3.4 Corollary of Lemma 3.4: P(v0 < 2N−k) = 1
2k

for Transition Lists of
Length N

Corollaire 3.8. Let N ≥ 1 and 0 ≤ k ≤ N . Among all transition lists of length N , the probability that the
associated minimal initial value satisfies v0 < 2N−k is exactly

P(v0 < 2N−k) =
1

2k
.

Proof. By iterating the reasoning of Corollary 3.7 k times, we observe that each additional transition bit
splits the space of minimal initial values in half. Starting from the full interval [0, 2N ), the probability that
a randomly constructed list yields a minimal v0 below 2N−k is thus

P(v0 < 2N−k) =
1

2k
.

This also yields the following consequences:

� The probability that v0 falls in the interval [2N−k, 2N−k+1) is likewise 1
2k

;

� By complement, the probability that v0 ≥ 2N−k is 1− 1
2k

.

Finally, to have a nonzero expected number of minimal values v0 < 2N−k in a sample of n0 = 2f(N)

transition lists, we require:
2f(N)

2k
> 1 if and only if k < f(N).

This inequality gives a critical threshold beyond which the probability of sampling such a value becomes
negligible.

Remarque 3.9. This exact power distribution is crucial in establishing bounds that scale logarithmically
with N in the Random List Theorem. It reflects the uniform binary structure induced by the bijection of
Lemma 3.4.

3.5 Iterated Binomial Reduction

Lemme 3.10 (Iterated Binomial Reduction). Let nb ∈ N, and define a sequence of random variables (Rk)k≥0

recursively by:
R0 = nb, and Rk ∼ Bin(Rk−1, 1/2) for all k ≥ 1.

Then, for every k ∈ N, the random variable Rk follows the binomial distribution:

Rk ∼ Bin

(
nb,

1

2k

)
.
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Proof. We proceed by induction on k.

Base case: for k = 0, we have R0 = nb, which is equivalent to R0 ∼ Bin(nb, 1), i.e., R0 ∼ Bin(nb, 1/20).

Inductive step: suppose that for some k ≥ 0, we have

Rk ∼ Bin

(
nb,

1

2k

)
.

Then, conditionally on Rk = r, the next variable satisfies

Rk+1 | Rk = r ∼ Bin(r, 1/2).

Thus, we can write:

Rk+1 =

Rk∑
i=1

Yi,

where the Yi are independent Bernoulli(1/2) variables, independent of Rk.
Since Rk ∼ Bin(nb, 1/2k), we can express:

Rk =

nb∑
i=1

Xi, where Xi ∼ Bernoulli(1/2k),

and the Xi are independent.
Each Xi = 1 indicates that the i-th item survived the first k filtering steps. For Rk+1, we apply one

more independent Bernoulli(1/2) filtering to each Xi = 1.
Therefore, each i ∈ {1, . . . , nb} survives the first k + 1 steps with probability:

P(survival) = 1

2k
· 1
2
=

1

2k+1
.

By independence, we conclude that:

Rk+1 ∼ Bin

(
nb,

1

2k+1

)
.

Conclusion: the result follows by induction: for all k ∈ N,

Rk ∼ Bin

(
nb,

1

2k

)
.

3.6 Proof ot the Theorem

Proof. Each transition list L defines a unique minimal solution v0 < 2N under the convention that v0 = 0
corresponds to the all-zero transition list (see Lemma 3.4).

For each transition tN−k−1 in each list, we consider v0 to be the minimal initial value that solves the
first N − k − 1 transitions.

We know that v0 < 2N−k−1.
Moreover, v0 is also the minimal solution for the first N−k transitions of L if and only if tN−k−1 matches

the ”natural” transition from v0, that is, if

((tN−k−1 = 1) and vN−k−1 is odd) or ((tN−k−1 = 0) and vN−k−1 is even).

The probability of this event is

pL · 1
2
+ (1− pL) ·

1

2
=

1

2
.

Indeed, if the transition does not match, then the minimal solution for the first N − k transitions of L
would be v0 + 2N−k ≥ 2N−k, and thus no longer strictly below the threshold.

We now prove by induction that Rk ∼ Bin
(
nb, 1

2k

)
.

Base case: For k = 1, we consider the final transition tN−1 of each transition list. Given that the
minimal initial value v0 for the first N − 1 transitions satisfies v0 < 2N−1, the value v0 also solves the full
list of N transitions if and only if tN−1 matches the natural parity transition induced by vN−1. This occurs
with probability 1/2, since the transition is chosen at random and independently of v0, and the parity of
vN−1 is balanced in expectation.

Since the nb transition lists are all distinct and independent, we perform nb independent Bernoulli trials
with success probability 1/2, one for each list. It follows that

R1 ∼ Bin(nb, 1/2).
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Inductive step: Assume that Rk−1 ∼ Bin(nb, 1/2k−1).
By iterating the same reasoning at step k, after analyzing the last k − 1 transitions of each list, each

remaining minimal value survives the next transition with probability 1/2, independently. Therefore,

Rk ∼ Bin

(
Rk−1,

1

2

)
.

Then, by applying Lemma 3.10, we deduce that

Rk ∼ Bin

(
nb,

1

2k

)
.

This completes the proof by induction.
Therefore, we conclude that the number of minimal initial solutions strictly less than 2N−k follows the

binomial distribution Bin(nb, 1/2k).

4 Random List Theorem

⌈f(N)⌉

N

With number of lists nb = 2⌈f(N)⌉ (N ; ⌈f(N)⌉)

(N − ⌈f(N)⌉; 0)

Statistic distribution
Upper bound of remaining solutions

Lower bound of remaining solutions

n

log2(v0)

lo
g
2
(s
ol
u
ti
on

s)

Figure 1: Number of solutions v0 < 2n

Remarque 4.1 (Idea). The probability that the minimal initial value v0 of a transition list L(N,m, d)
satisfies v0 < 2n is 2N−n.

If 2f(N) random lists are tested, then we expect

E [#{v0 < 2n}] ≈ 2f(N) · 2n−N = 2e.

Hence, the shift index e provides a direct estimate of the expected number of solutions.

Théorème 4.2 (Random List Theorem). Let a set of nb = 2f(N) transition lists of length N , independently
and randomly generated. Each list L(N,m, d) may contain an arbitrary proportion m/N of type 1 transitions,
without any specific constraint.

For a given integer n < N , let Rn denote the number of minimal initial values v0 < 2n among the set of
transition lists.

Then Rn follows the binomial distribution:

Rn ∼ Bin

(
2f(N),

1

2N−n

)
.

This distribution follows directly from the independence of the lists and the successive filtering mechanism
applied to the last N − n transitions.

Define:
e := n−N + ⌈f(N)⌉.

(i) Bounds via the Central Limit Theorem.

Let 4 ≤ z ≤ 6 be a real number. Then, with probability at least 1− ε, where ε = e−z2/2:

– if e ≥ 7, then Rn ≥ 64− 8
√
2z,

– if e ≤ 6, then Rn ≤ 64 + 8z.
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(ii) Bounds via the Berry–Esseen inequality.

For any ε < 10−3, define:

K :=

⌈
2 · log2

(
0.56

ε

)⌉
+ 1.

Then, with probability at least 1− ε, we have:

– if e > K, then Rn > min := 2K−1 −
√

2 ln(1/ε) ·
√
2K ,

– if e < K, then Rn < max := 2K +
√

2 ln(1/ε) ·
√
2K .

The following values are guaranteed for some standard thresholds:

ε K min max

10−3 20 520,481 1,052,383

10−4 26 33,519,272 67,144,024

10−5 33 4,294,522,559 8,590,379,329

Proof. According to Theorem 3.1, we have

Rn ∼ Bin(nb, 1/2N−n).

(i) Central Limit Theorem approximation:

Let k = N − n, the number of suffix transitions under analysis.

We apply the classical Central Limit Theorem to the sum of nb independent and identically distributed
Bernoulli variables with constant parameter p = 1/2k.

This sum defines the variable Rn, with expected value and standard deviation given by:

µ := E[Rn] = nb · p =
nb

2k
,

σ :=
√

Var(Rn) =
√

nb · p(1− p) =

√
nb

2k

(
1− 1

2k

)
.

As soon as µ = nb
2k

≳ 30, the normal approximation becomes accurate in practice. Asymptotically, we
have convergence in distribution:

Zn :=
Rn − µ

σ

D−−−−→
nb→∞

N (0, 1).

We now derive probabilistic bounds for Rn using a Gaussian tail threshold z > 0.

– Upper bound (tail on the right):

P(Zn < z) > 1− ε whenever Rn < µ+ z · σ, with ε := 1− Φ(z).

We bound successively:

Rn <
nb

2k
+ z ·

√
nb

2k

(
1− 1

2k

)
<

nb

2k
+ z ·

√
nb

2k
.

Now suppose nb = 2f(N) ≤ 2⌈f(N)⌉. Then,

Rn <
2⌈f(N)⌉

2k
+ z ·

√
2⌈f(N)⌉

2k
.

Define e := n−N + ⌈f(N)⌉. Then e ≤ 6 is equivalent to k ≥ ⌈f(N)⌉ − 6. Since Rn is decreasing
in k, the upper bound is maximal when k = ⌈f(N)⌉ − 6. Therefore:

if e ≤ 6 thenRn < 64 + 8z.

– Lower bound (tail on the left):
Using the Central Limit Theorem, for any z > 0, we have:

P(Zn > z) > 1− ε whenever Rn > µ− z · σ, with ε := 1− Φ(z).

We start from the inequality:

Rn >
nb

2k
− z ·

√
nb

2k

(
1− 1

2k

)
>

nb

2k−1
− z ·

√
nb

2k−1
.
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Now suppose nb = 2f(N) ≥ 2⌈f(N)⌉−1. Then:

Rn >
2⌈f(N)⌉−1

2k
− z ·

√
2⌈f(N)⌉

2k
.

Define e := n−N + ⌈f(N)⌉. Then e ≥ 7 is equivalent to k ≤ ⌈f(N)⌉ − 7.
Since Rn is decreasing in k, the lower bound is minimal when k = ⌈f(N)⌉ − 7. Therefore:

if e ≥ 7 thenRn > 64− 8
√
2z.

Numerical remark: For z ≥ 4, the Mills ratio gives z ≈
√

2 ln(1/ε), hence ε ≈ e−z2/2.

(ii) Approximation with Berry–Esseen Inequality:

– Berry–Esseen Inequality
We apply the Berry–Esseen inequality to the centered and normalized variable

Zn :=
Rn − nb · p√
nb · p(1− p)

,

where Rn denotes the number of minimal initial values below 2n among a large set of nb = 2f(N)

transition lists of length N . Although the process is fundamentally deterministic, the distribution
of Rn can be approximated by that of a binomial variable Bin(nb, p), with p = 1/2N−n, based on
probabilistic modeling of parity transitions.
This allows us to apply the standard form of the Berry–Esseen inequality, which quantifies
the convergence to the normal distribution for sums of independent and identically distributed
Bernoulli(p) variables.
The third absolute centered moment of a Bernoulli variable is given by

ρ = E[|X − p|3] = p(1− p)3 + (1− p)p3 = p(1− p)(1− 2p+ 2p2),

which is finite for any fixed p ∈ (0, 1). The variance is σ2 = p(1 − p), and the Berry–Esseen
inequality yields:

|P(Zn ≤ z)− Φ(z)| ≤ C · ρ
σ3

√
nb

=
C · (1− 2p+ 2p2)

(p(1− p))1/2 ·
√
nb

=
Cp√
nb

,

with C ≤ 0.56 an absolute constant.
Let

Cp :=
C · (1− 2p+ 2p2)

(p(1− p))1/2
,

which depends only on p. This formulation enables us to derive explicit quantitative bounds
for the probability that Rn deviates from its expectation, using Gaussian approximations with
computable error margins.

– Getting the threshold
We aim to ensure that P(Zk < z) > 1 − ε, and we seek to determine for which values of nb this
inequality holds.
Approximating the Gaussian tail for large z using the classical Mills ratio :

1− Φ(z) ≈ 1

z
√
2π

e−z2/2,

we substitute z :=
√

2 ln(1/ε), which yields:

1− Φ(z) ≈ ε√
4π ln(1/ε)

.

According to the Berry–Esseen inequality:

P(Zk < z) ≥ Φ(z)− Cp√
nb

.

Therefore, we require:

Φ(z)− Cp√
nb

> 1− ε.

By substituting the approximation for Φ(z), we obtain:

ε√
4π ln(1/ε)

+
Cp√
nb

< ε.

10



To simplify, note that for small ε, we have ln(1/ε) ≫ 1, so ε√
4π ln(1/ε)

≪ ε. Therefore, this term

becomes negligible, and we may approximate the condition by:

Cp√
nb

< ε, which implies nb >

(
Cp

ε

)2

.

For largeN−n (i.e., when we filter over a large number of final transitions), we have p = 1/2N−n ≪
1, and the constant becomes:

Cp =
C · (1− 2p+ 2p2)√

p(1− p)
≈ C

√
p
.

Substituting this into the bound yields the condition:

nb >

(
C

ε

)2

· 2N−n.

Taking logarithms (base 2), we obtain:

log2(nb) > 2 log2

(
C

ε

)
+ (N − n).

Let us define nb = 2f(N). Then the inequality becomes:

f(N) > 2 log2

(
C

ε

)
+ (N − n).

This is satisfied as soon as

⌈f(N)⌉ − 1 ≥
⌈
2 log2

(
C

ε

)⌉
+ (N − n).

Let us define the threshold:

K :=

⌈
2 log2

(
C

ε

)⌉
+ 1, and let e := n−N + ⌈f(N)⌉.

Then the condition becomes simply:
e ≥ K.

– Upper bound (tail on the right): By applying the Berry–Esseen inequality at depth nK =
N − ⌈f(N)⌉+K (i.e., when e = K), we obtain:

P(ZnK ≤ z) ≥ 1− ε, with z =
√

2 ln(1/ε).

Since ZnK =
RnK + µ

σ
, this implies:

RnK < µ+ z · σ, with probability at least 1− ε,

where

µ = E[RnK ] =
nb

2N−nK
=

2f(N)

2⌈f(N)⌉−K
≤ 2K ,

and

σ =
√

Var(RnK ) =

√
µ

(
1− 1

2N−nK

)
<

√
µ ≤

√
2K .

Therefore, with probability at least 1− ε, we have:

RnK < 2K + z ·
√
2K .

Finally, since Rn ≤ RnK for all e ≤ K i.e. n ≤ nK (as the sequence Rk is increasing in k), the
upper bound on RnK also applies to Rn.

if e ≤ K thenRn < 2K + z ·
√
2K .

11



– Lower bound (tail on the left):
Since

|P(Zn ≤ z)− Φ(z)| = |P(Zn ≥ −z)− Φ(−z)| ,
we may reuse the previous estimates in the opposite tail.
By applying the Berry–Esseen inequality at depth nK = N − ⌈f(N)⌉+K (i.e., when e = K), we
obtain:

P(ZnK ≥ −z) ≥ 1− ε, with z =
√

2 ln(1/ε).

Since ZnK =
RnK − µ

σ
, this implies:

RnK > µ− z · σ, with probability at least 1− ε,

where

µ = E[RnK ] =
nb

2N−nK
=

2f(N)

2⌈f(N)⌉−K
≥ 2K−1,

and

σ =
√

Var(RnK ) =

√
µ

(
1− 1

2N−nK

)
<

√
µ ≤

√
2K .

Therefore, with probability at least 1− ε, we have:

RnK > 2K−1 − z ·
√
2K .

Finally, since Rn ≥ RnK for all e ≥ K i.e. n ≥ nK (as the sequence Rk is increasing in k), the
lower bound on RnK also applies to Rn.

if e ≥ K thenRn > 2K−1 − z ·
√
2K .

Remarque 4.3 (Random List Theorem for Non-Random Sets of Transition Lists).

Conclusion. For sets of transition lists delimited by suitable boundaries, the Random List Theorem can
be applied without any special modification.

In the proofs, we would like to apply the Random List Theorem to sets of transition lists that are neither
random nor independent.

If one were to apply the theorem to the entire set of 2N transition lists of length N , then for every
0 < n ≤ N we would obtain Rn = 2N−n by the bijection (see 3.4), and nothing would be random. The
difficulty is that if one considers an arbitrary subset of transition lists, without any specific structural
property, the extreme cases cannot be excluded, which makes it difficult to draw any meaningful conclusion.

To overcome this difficulty, recall that mn denotes the number of type 1 transitions among the first
n transitions of L. With this notation in place, we shall apply the Random List Theorem to a family of
transition lists L(N,m, d) satisfying the condition

mn ≥ ⌈kn⌉ for all 0 < n ≤ N,

together with either ⌈kN⌉ ≤ m ≤ N or m = ⌈kN⌉, where k = ln(2)/ ln(3), for instance for the list Ceil(N)
that we shall study later in Section 6.

Each such list, as in Figure 2, can be interpreted as a discrete path from (0, 0) to (d,m) consisting of N
elementary steps, where each step is either:

� a horizontal move (type 0 transition), increasing d by 1; or

� a vertical move (type 1 transition), increasing m by 1.

In the diagram above:

� The blue line represents the Ceil boundary (a constraint to be respected);

� The green line is a valid transition list, always staying above Ceil;

� The black line is the classical boundary of the Catalan triangle (without the Ceil constraint);

� Green points indicate the endpoints of valid transition lists for N = 15 (only the intersection point
with Ceil(N) when we restrict to m = k ·N);

Note that transition lists passing through the points on the vertical axis (0, n) have the minimal solution
v0 ≥ 2n−1.

The number of lists passing through each point (d,m) is at least on the order of N , which is very large,
except at (0,m) where m is the extremal value of m; in that case, there is only a single list, but its minimal
solution is far too large and does not belong to the set of admissible solutions.
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Figure 2: Diagram of transition paths relative to the Ceil boundary.

For n = m+ d > 2, at the point (d,m) the probability that vn is even is equal to 1/2.
For the minimal solution v0 of a transition list to be less than 2n−1, and therefore equal to the value

v0 obtained for the restriction to the first n − 1 transitions, it is necessary that the transition tn−1 be the
“natural” transition taking vn−1 to vn.

Conversely, for the minimal solution v0 of a transition list to be greater than 2n−1, and therefore not
equal to the value v0 obtained for the restriction to the first n− 1 transitions, it suffices that the transition
tn−1 is not the natural transition from vn−1 to vn.

� For most points (interior points), such as point 1 with coordinates (3, 11): the lists passing through
point 1 originate either from point 2 or from point 3.

� For points on the boundary that are preceded by a single “East” step, such as point 4 with coordinates
(5, 9): the lists passing through point 4 originate only from point 5.

� In the case where the maximal value of m is taken to be ⌈kN⌉, then for points with maximal ordinate,
such as point 6 with coordinates (2, 10): the lists passing through point 6 originate only from point 7.

In all these situations, a very large number of lists pass through the point, which means that the proba-
bility of vn−1 being even is always 1/2. For the minimal solution v0 of a transition list to satisfy v0 < 2n−1,
it is necessary that the considered transition be the natural one, i.e., that vn−1 is odd at point 2 or even
at point 3. Hence, statistically, there are twice as few lists after accounting for transition tn−1 whose min-
imal solution is less than 2n−1 as there were with minimal solution less than 2n before accounting for this
transition.

Repeating the same reasoning for all the last transitions, we conclude that for these sets of non-random
and non-independent lists, the same result holds as in the random case.

We may note that translating the Ceil boundary horizontally to the right by prefixing it with 2p type 0
transitions does not alter the previous argument.

Under these circumstances, the Random List Theorem can be applied without any special modification.

Remarque 4.4 (Heuristic Approach to Establishing the Existence of Solutions). Using the Central Limit
Theorem, we observe that in the case e = 6, which is equivalent to N − n = ⌈f(N)⌉ − 6 and hence
2⌈f(N)⌉/2N−n = 64, we obtain:

Rn < 64 + 8z = 96 < 128 = 27 for z = 4.

This indicates that the number of minimal values is almost halved at each step when analyzing the last
N − n transitions. What initially appeared chaotic at the individual level becomes a smooth continuum
when considering the system globally.

Even though there is no rigorous mathematical justification for it, the process being deterministic allows
us to reasonably conjecture that, by adding 7+6=13 more steps (to account for the remaining fluctuations),
we reach Rn−13 = 0, meaning that there are no solutions v0 < 2n−13.
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From this, we heuristically infer the following rule:

If e < −7, then Rn = 0 (no solution v0 < 2n) with very high probability.

The probability is increasing as e ≪ −7.
This rule is not mathematically rigorous, but it provides a useful intuition before applying formal rea-

soning with larger residual solutions.

Remarque 4.5. The validity of this estimate relies on the assumption that the sample of transition lists
is drawn uniformly at random. Biases in the selection—such as favoring lists associated with small v0—can
significantly distort the statistical outcome. This has been confirmed by discrepancies observed in numerical
experiments based on non-uniform or partitioned samplings.

Remarque 4.6. In earlier versions of this document (up to version 4.2.1 inclusive), the probabilistic rea-
soning relied on Corollary 3.8, which states that P(v0 < 2N−k) = 1

2k
. To bound the number of values

v0 < 2N−k, denoted by Rk, the last k transitions were considered, and the Central Limit Theorem was used
to estimate the associated binomial distribution at each step.

At each stage, Rk was bounded above and below around the expected proportion, using an interval
centered at n/2 with growing width. This allowed a valid interval to be maintained at each step, but
without control over the global error probability.

The weakness of this approach lies in the fact that extreme cases (beyond a certain number of standard
deviations) were not taken into account. The assumption that Rk could not fall outside this interval relied
on the idea that extreme cases could not occur, due to the underlying process being deterministic rather
than purely random — a mathematically incorrect reasoning.

Indeed, if one fixes a threshold zk = 4, corresponding to a local error εk ≈ 3.35 × 10−4, then the
probability that at least one of the k steps falls outside the interval is bounded above by kεk (since the
probability of a union is less than the sum of individual probabilities). For significant values of k (as used
in the proof with α = 20, cα = 285, p = 100, giving k = cα · α− (cα + p) = 285× 20− (285 + 100) = 5580),
this leads to a global error greater than 1, rendering the argument invalid.

In the current version, this mistake is addressed by consolidating the k steps into a single argument,
relying on the fact that Rk ∼ Bin

(
nb, 1

2k

)
(see Theorem 3.1).

Remarque 4.7 (Comparison between the asymptotic (Central Limit Theorem) and rigorous (Berry–Esseen)
approaches). In informal reasoning, it is common to apply the Central Limit Theorem (CLT) to approximate
a binomial distribution by a normal distribution as soon as the condition

nb · p ≳ 30

is met. In our context, this allows filtering up to N − n = f − 6 when nb = 2f , leaving only

Rf−6 ≈ 26 = 64

residual elements to analyze.
However, this approximation relies on asymptotic convergence without any explicit error bound. It is

therefore not directly usable in a formal proof system such as Coq or Lean.
In contrast, the Berry–Esseen inequality provides a fully explicit bound on the deviation from the normal

distribution. When applied with ε = 10−3, it restricts the filtering depth to

N − n = f − 20,

leaving a much larger number of residual elements:

Rf−20 ≈ 220 ≈ 106.

This loss of efficiency is the price to pay for obtaining a **rigorous and formally justifiable** upper bound
on the error probability, which is essential for formal verification.

Summary : the CLT provides sharper bounds but is not formally provable; Berry–Esseen is more conservative
but suitable for rigorous proofs.

5 The Approximate Reduced Syracuse Sequence: (v′n)

We consider an approximate version of the reduced Syracuse sequence, where the term 3vn + 1 is replaced
with 3vn. This approximation is intuitively justified when v0 is sufficiently large and n remains moderate,
in which case the additive term +1 becomes negligible compared to the dominant multiplication by 3.

We construct a sequence (v′n) that reproduces the same transition types (even or odd) as the exact
sequence (vn)n≥0. It is defined by:
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
v′0 = v0 > 0,

v′n+1 =
v′n
2

if vn is even (type 0 transition),

v′n+1 =
3v′n
2

if vn is odd (type 1 transition).

Note that the elements of the approximate sequence (v′n) are generally not integers.

5.1 Decomposition of vn in Terms of v′n and a Rational Residue

Proposition 5.1. For all n ≥ 0, there exists a rational number rn ∈ Q such that

vn = v′n + rn.

Proof. The proposition holds at n = 0 with r0 = 0.
Assume it holds for some n ≥ 0: vn = v′n + rn. We prove it holds at n+ 1:

� If vn is even:

vn+1 =
vn
2

=
v′n + rn

2
=

v′n
2

+
rn
2

= v′n+1 +
rn
2
.

So rn+1 = rn
2
.

� If vn is odd:

vn+1 =
3vn + 1

2
=

3(v′n + rn) + 1

2
=

3v′n
2

+
3rn + 1

2
= v′n+1 +

3rn + 1

2
.

So rn+1 = 3rn+1
2

.

By induction, the proposition holds for all n ≥ 0.

Remarque 5.2. The sequence (rn) can be defined recursively based on the transition types of (vn):
r0 = 0

rn+1 =
rn
2

if vn is even

rn+1 =
3rn + 1

2
if vn is odd

Note that the recurrence relation for (rn) depends only on the parity pattern of (vn) (i.e., the transition
list), and not on the actual values of (v′n) or the initial value v0. It acts as a rational ”residue” that encodes
the discrepancy and allows reconstruction of the exact sequence (vn) from its approximation (v′n).

In particular, rn ≥ 0 for all n ≥ 0.

Remarque 5.3. The sequence (rn) remains small compared to (v′n) when v0 is large and n is moderate,
justifying the approximation vn ≈ v′n. This observation will be quantified in the next section to control the
error term in applications of the approximate model.

5.2 Explicit Expression of vn in Terms of v0 and rn

Proposition 5.4. Let L(N,m, d) = (t0, . . . , tN−1) be a transition list of length N , and let mn denote the
number of type 1 transitions among its first n entries. Then for all 0 ≤ n ≤ N , we have:

vn =
3mn

2n
v0 + rn,

where (rn) is the sequence defined in Proposition 5.1.

Proof. We recall that v′n evolves under multiplicative factors of 1/2 and 3/2, depending on the transitions.
After mn type 1 transitions and (n−mn) type 0 transitions, we have:

v′n =

(
3

2

)mn
(
1

2

)n−mn

v0 =
3mn

2n
v0.

Using vn = v′n + rn, the result follows.

Remarque 5.5. This decomposition highlights a multiplicative factor 3m/2N depending only on the global
structure of the transition list L(N,m, d), and a residue rN depending solely on the positions of the type 1
transitions—not on the initial value v0.

This is a key step toward applying the Random List Theorem discussed in Section 4.
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5.3 Closed-Form Expression for rn Based on Transitions

Théorème 5.6. Let L(N,m, d) be a transition list of length N . For any 0 ≤ n ≤ N , let mn denote the
number of type 1 transitions among the first n elements, and let ind(i) denote the index (starting from 0) of
the ith type 1 transition in the list. Then:

� If mn = 0, then rn = 0.

� If mn > 0, then:

rn =
3mn

2n

mn∑
i=1

2ind(i)

3i
.

Proof. We proceed by induction on n.
Base case: n = 1

� For L = (0), m1 = 0 and r1 = 0, so the formula holds (empty sum).

� For L = (1), m1 = 1, ind(1) = 0:

r1 =
31

21
· 2

0

31
=

1

2
.

which matches the closed-form expression for r1.

Induction step: Assume the formula holds at rank n. We show it holds at n+ 1:

� If tn = 0, then mn+1 = mn, and:

rn+1 =
rn
2

=
3mn

2n+1

mn∑
i=1

2ind(i)

3i
.

� If tn = 1, then mn+1 = mn + 1, and:

rn+1 =
3rn + 1

2
.

Substituting rn:

rn+1 =
1

2n+1

(
3 ·

mn∑
i=1

3mn−i · 2ind(i) + 2n
)
,

=
1

2n+1

(
mn∑
i=1

3mn+1−i · 2ind(i) + 30 · 2n
)
,

=
1

2n+1

mn+1∑
i=1

3mn+1−i · 2ind(i).

Thus, the formula holds at n+ 1.

5.4 Effect of the Order of Type 0 Transitions on the Growth of rn
Proposition 5.7. Among all transition lists L(N,m, d) with m type 1 and d type 0 transitions, the final
residue rN satisfies:

� rN is minimal when all type 1 transitions occur first (denoted LRmin),

� rN is maximal when all type 0 transitions occur first (denoted LRmax).

In particular:

rmin
N =

3m

2N
− 1

2d
, rmax

N =

(
3

2

)m

− 1.

Proof. From Theorem 5.6, we write:

rN =
3m

2N

m∑
i=1

2ind(i)

3i
.

Shifting a type 0 transition earlier increases some indices ind(i) without decreasing any. Since x 7→ 2x is
strictly increasing, rN increases accordingly.

Minimum: all type 1 transitions first:

ind(i) = i− 1, for 1 ≤ i ≤ m.

rmin
N =

3m

2N

m∑
i=1

2i−1

3i
=

3m

2N
·

m∑
i=1

(
2

3

)i−1

· 1
3
=

3m

2N
·

(
1−

(
2
3

)m
1− 2

3

)
· 1
3
.

=
3m

2N
− 1

2d
.
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Maximum: all type 0 transitions first:

ind(i) = d+ i− 1.

We factor out the 2d term:

rmax
N =

3m

2N

m∑
i=1

2d+i−1

3i
=

2d · 3m

2N

m∑
i=1

2i−1

3i
.

This sum is the same geometric series as above, hence:

rmax
N =

2d · 3m

2N

(
1−

(
2

3

)m)
=

(
3

2

)m

− 1.

Remarque 5.8. The order of type 0 transitions can exponentially influence the residue rN . Between the
two extreme configurations:

rmax
N

rmin
N

≈ 2d.

This justifies focusing on subsets of transition lists where the residue rN remains uniformly bounded. Such
control is essential when comparing the exact trajectory (vn) to its approximation (v′n).

5.5 Final Residue for a Concatenation of Transition Lists

In this section, we study how the final residue R0 = rN0 evolves when the transition list L0 = L(N0,m0, d0)
is obtained by concatenating a collection of sublists L1, . . . ,Ln.

For each k = 1, . . . , n, we define:

� Lk = L(Nk,mk, dk): a transition list of length Nk = mk + dk,

� Fk =
3mk

2Nk
: the multiplicative factor associated with Lk,

� Rk = rNk : the rational residue associated with Lk,

� fk =
∏k

i=1

1

Fi
: the reciprocal product of the Fi up to index k.

We recall from Proposition 5.4 that the final value of a block of transitions satisfies:

v(Nk,Lk) = Fk · v(0,Lk) +Rk.

Proposition 5.9 (Concatenation formula for residues). Let L0 = L1 + L2 + · · · + Ln be the successive
concatenation of the lists Lk. Then the final residue R0 associated with L0 satisfies:

R0 = F0 ·
n∑

k=1

fkRk, where F0 =

n∏
k=1

Fk =
3m0

2N0
.

Proof. We prove the result by induction on the number n of concatenated blocks.
Base case: n = 2 Let L0 = L1 + L2. From Proposition 5.4, we have:

v(N2,L2) = F2 · v(0,L2) +R2, and v(0,L2) = v(N1,L1) = F1 · v(0,L1) +R1.

Therefore:
v(N0,L0) = F2(F1v0 +R1) +R2

= F0v0 + F2R1 +R2,

so R0 = F2R1 +R2 = F0(f1R1 + f2R2).

The general case follows by iterating this recurrence.

6 Study of the Transition List Ceil(N)

We focus here on a particular transition list, denoted Ceil(N), defined by a strict control on the proportion
of type 1 transitions.

Définition 6.1. Letmn be the number of type 1 transitions among the first n transitions in a list L(N,m, d).
The list Ceil(N) is defined by the condition:

mn =

⌈
ln 2

ln 3
· n
⌉

for all 0 < n ≤ N.
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6.1 Threshold of the Trajectory: vn > v0 for All 0 < n ≤ N

Proposition 6.2. Let (vn) be the Syracuse sequence associated with the list Ceil(N). Then:

vn > v0 for all 0 < n ≤ N.

Proof. By definition of Ceil(N), we have for all n > 0:

mn =

⌈
ln 2

ln 3
· n
⌉
>

ln 2

ln 3
· n.

This implies:
mn · ln 3 > n · ln 2 if and only if 3mn > 2n.

Using Proposition 5.4, we write:

vn =
3mn

2n
· v0 + rn,

with rn ≥ 0. Therefore:
vn > v0,

as required.

6.2 Bounding rn in the Ceil(N) List

Théorème 6.3. For the transition list Ceil(N), we have:

mn

5
< rn < mn, for all 0 < n < N ≤ 106.

Proof. Direct numerical verification for N ≤ 106

The entries in the tables below are sorted to highlight:

� Table 1 (bn = rn −mn): most negative additive gaps;

� Table 2 (an = rn/mn): smallest multiplicative coefficients;

� Table 3 (cn = rn/mn): largest multiplicative coefficients.

Table 1: bn Table 2: an Table 3: cn
bn n an n cn n

-0.5 1 0.2404498 780239 0.7213476 301994
-0.75 2 0.2404499 478245 0.7213469 603988
-1.344 5 0.2404504 176251 0.7213466 905982
-1.375 3 0.2404506 956490 0.7213466 125743
-1.562 4 0.2404506 654496 0.7213444 427737
-1.762 8 0.2404508 352502 0.7213442 75235
-2.508 7 0.2404516 830747 0.7213440 729731
-2.672 6 0.2404517 528753 0.7213435 251486
-3.321 10 0.2404522 226759 0.7213428 24727
-3.611 13 0.2404524 705004 0.7213421 553480
-3.688 16 0.2404526 403010 0.7213416 855474

For N = 1000000:
r1000000 = 198875.6767 ≈ 217.6 ≈ 0.315 ·m1000000,

These results confirm that:

0.24 ·mn < rn < 0.72 ·mn so
mn

5
< rn < mn.
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7 Answers to Questions and Conjectures Involving sft(n)

7.1 Problem Analysis

The answers in this section concern the following points from the document ”SE”:

� Title: “Is the Syracuse Falling Time Bounded by 12?”

� Conjecture 5.2: “We have sft(n) ≤ 2 for all odd n ≥ 25000.”

� Question §3.2: “Again, we may ask whether sft12(n) = 1 holds for all odd n ≥ 3.”

All these points refer to the function sft(n).
The complexity of the problem stems from the fact that the value sft(n) depends on the jump function

sjp(n), which itself is based on the extracted sequence syr(n), containing only the odd values from the orbit
of n under the application T . In general, it is therefore impossible to explicitly revert to T to compute
sjp(n).

However, it is worth noting that sjp(n) is well-defined: if the sequence diverges starting from n, it contains
infinitely many odd values, and thus at least ℓ of them. If it converges to a cycle, the cycle must contain at
least one type-1 transition, and therefore also at least ℓ odd values.

We are interested here in the transition list L(N,m, d) (see 2.2), which describes the sequence of parity
bits or transition types associated with the orbit of n. The value sjp(n) corresponds to the ℓ-th odd value
in this orbit, but the index of this value in the sequence {T (k)(n)}k≥0 is not constant.

In other words, the trajectory of n is a list L(N,m, d), where m = ℓ, N = m+ d, and T (N)(n) = sjp(n).
Since d is not fixed, sjp(n) can be either much larger or much smaller than n.

� If d is large, then sjp(n) = T (N)(n) is significantly smaller than n, and therefore may have fewer bits.

� If d is small, then sjp(n) is larger than n and may have more bits.

This variability makes the application of the Random List Theorem (see 4.2) challenging, since it is based
on transition lists of fixed length N .

We therefore restrict our study to the integers n for which all values sjp(x)(n), for 0 < x ≤ 12, have the
same number of bits as n and satisfy sjp(x)(n) > n. This restriction allows us to enumerate a subset of
possible trajectories and to deduce a lower bound on the constant C sought in Conjecture 3.7.

We simply hope that this restriction is not too severe to prevent proving that C ≥ 13.
The precise approach is divided into three main steps:

1. We determine the values ofN1 (trajectory lengths), and nb1, the number of transition lists L(N1,m1, d1)
(or the number of values of n < 2N1) such that n ≤ T (N1)(n) = vN1 ≤ 2n < 2N1 .

2. We then compute the number nb = 2f(xN1) of transition lists L(N = xN1,m = xm1, d = xd1) (or the
number of values n < 2N ), such that for all 0 < i ≤ x, we have T (iN1)(n) = viN1 > n, and each such
value has the same number of bits as n.

3. Finally, we apply the Random List Theorem (see 4.2), which allows us to conclude that there exist
values of n such that sft(n) ≥ x+ 1. We use Remark 4.3 to apply the theorem to this non-random set
of transition lists.

More precisely, if n is the minimal solution of a trajectory of length N = xN1 such that for all 0 < i ≤ x,
we have T (iN1)(n) > n and each T (iN1)(n) has the same number of bits as n, then T (N)(n) also has
the same number of bits as n.

If there exist solutions n in the interval [2ℓ−1, 2ℓ) with ℓ = m1, then T (N)(n) = sjp(x)(n), since the
correct number of odd transitions is present in each sublist of length N1.

By definition, sft(n) is the smallest value k such that sjp(k)(n) < n, which implies sft(n) ≥ x+ 1.

In other words, the existence of such solutions n in the interval [2ℓ−1, 2ℓ) with ℓ = m1 and x = 12
guarantees the existence of counterexamples to Conjecture 3.7 and provides a lower bound on the
constant C.

The Random List Theorem thus provides a perfectly suited tool for addressing this type of question.

7.2 Step 1: Determination of N1 and nb1

We determine the values of N1, the trajectory lengths, and nb1, the number of transition lists L(N1,m1, d1)
(or the number of values of n < 2N1) such that n ≤ T (N1)(n) = vN1 ≤ 2n < 2N1 .
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Possible Values of N1

In this section, we use the approximate reduced sequence v′, defined in Section 5, to model the iteration of
the function T . Let m denote the number of type-1 transitions (that is, odd values) in the first p steps of
the trajectory OT (n). The following formula holds:

T (p)(n) =

(
3m

2p

)
n+Rp,

where the residual term Rp is defined recursively by

R0 = 0, Rp+1 =

{
Rp/2 if T (p)(n) is even,

(3Rp + 1)/2 if T (p)(n) is odd.

The term Rp does not explicitly depend on n. It depends only on the sequence of transitions, which
allows it to be computed independently of the starting point, for each parity list.

Since Rp ≥ 0 for all p, the following lower bound is immediate:

T (p)(n) ≥
(
3m

2p

)
n.

We are thus interested in finding pairs (m, d), where d = p−m, such that the ratio 3m

2m+d exceeds 1. This

condition guarantees that T (p)(n) > n. At the same time, we seek ratios that remain close to 1, in order to
control the growth.

Consider the inequality
3m

2m+d
> 1.

This inequality holds if and only if
m ln 3− (m+ d) ln 2 > 0.

Since ln 3− ln 2 > 0, dividing both sides by d(ln 3− ln 2) preserves the inequality, which gives

m ln 3−m ln 2− d ln 2

d(ln 3− ln 2)
> 0.

Simplifying the numerator leads to
m

d
>

ln 2

ln 3− ln 2
.

We set

X =
ln 2

ln 3− ln 2
.

The condition is therefore equivalent to
m

d
> X.

We now consider upper approximations of the constant X by rational fractions m/d such that 3m

2m+d >
1, while keeping the quotient as close to 1 as possible. These approximations are computed using the
Stern-Brocot tree method. The following table presents the first such approximations, obtained from the
supplementary test file [2]:

m d N = m+ d 3m/2N

2 1 3 1.125
7 4 11 1.068
12 7 19 1.014
53 31 84 1.00209

359 210 569 1.0010664
665 389 1054 1.0000436

16266 9515 25781 1.0000255
31867 18641 50508 1.00000726

Table 2: Upper Approximations of X by m/d

These approximations provide candidate pairs (m1, d1), and trajectory lengths N1 = m1 + d1, that are
relevant for our study.

Since numerical tests have already covered the domain ℓ ≤ 40, particular attention will be given to the
following values for N1: 84, 569, 1054, 25781, and 50508. Additional pairs can be generated using the same
method.
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Condition T (N1)(n) ≤ 2n < 2N1

For the condition T (N1)(n) < 2N1 , it suffices to restrict the analysis to the minimal solutions of the transition
lists of length N1, in accordance with Lemma 3.4.

The condition T (N1)(n) ≤ 2n is more delicate. In particular, it is not possible to allow large oscillations
of T (i)(n) around n for 0 < i < N1. Indeed, the residual term RN1 is maximal when the list begins with d1
type-0 transitions followed by m1 type-1 transitions (the list LRmax), because leading type-0 transitions
amplify Rp (see § 5.4).

In this case, we have the approximation:

T (N1)(n) ≈ 3m1

2N1

(
n+ 2d1

)
,

which imposes, in order to obtain T (N1)(n) ≤ 2n, the condition n < 2d1 . This bound is too restrictive in
our context since d1 < m1.

According to Section 6.2, for the transition list Ceil(N1), we have the bound

RN1 < m1,

and numerical computations provide the estimate

R1,000,000 < 218.

Therefore, in this context, the condition
T (N1)(n) ≤ 2n

holds for the minimal solution n associated with Ceil(N1).
It is useful to observe for later comparisons that

1,000,000 > 20× 25,781.

We will now restrict our attention to the set E(N1), which consists of the transition lists L(N1,m1, d1)
that satisfy

Ceil(N1) ≼ L(N1,m1, d1),

where the parameter m1 is defined by

m1 =

⌈
N1 ·

ln 2

ln 3

⌉
.

Here, the symbol ≼ refers to the partial order defined in Section 2.3.
Since Ceil(N1) is the minimal element of E(N1) with respect to this partial order, and since all the lists

in E(N1) contain the same number of type-1 transitions, it follows from Section 5.4 that Ceil(N1) maximizes
RN1 .

Consequently, for every transition list in E(N1), the inequality

T (N1)(n) ≤ 2n

is satisfied when n is the minimal solution associated with the corresponding list.

Enumeration of the Admissible Transition Lists nb1

The number of elements in the set E(N1) is exactly nb1.
For the transition list Ceil(N1), the following property holds: for all integers p such that 0 < p ≤ N1, we

have
T (p)(n) > n,

as stated in Proposition 6.2.
Since Ceil(N1) is the minimal element of E(N1) with respect to the partial order defined in Section 2.3,

this property is also satisfied by all transition lists in E(N1).
Without any constraint, the total number of possible transition lists of length N1 containing m1 type-1

transitions (and therefore d1 = N1 −m1 type-0 transitions) would be
(
N1
m1

)
.

However, to account for the minimality condition imposed on n = v0, we retain only one transition list
among its N1 circular permutations. This leads to:

nb1 =
1

N1

(
N1

m1

)
, with N1 ∈ {84, 569, 1054, 25781, . . .}.

Here are the first corresponding numerical values:
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m1 d1 N1 = m1 + d1
(
N1

m1

)
≈ 2cN1 nb1 ≈ 2(c−log2 N1/N1)N1

53 31 84 20.90855N1 20.83245N1

359 210 569 20.94143N1 20.92536N1

665 389 1054 20.94493N1 20.93540N1

16266 9515 25781 20.94966N1 20.94909N1

31867 18641 50508 20.94980N1 20.94950N1

Table 3: Values of nb1

7.3 Step 2: Determination of the Number nb = 2f(N) of Transition Lists
L(N = xN1,m = xm1, d = xd1)

We compute the number nb = 2f(xN1) of transition lists L(N = xN1,m = xm1, d = xd1) (or the number
of values n < 2N ), such that for all 0 < i ≤ x, we have T (iN1)(n) = viN1 > n, and each such value has the
same number of bits as n.

According to Lemma 3.4, for each trajectory of length N = xN1, the condition n < 2N is automatically
satisfied as soon as n is a minimal solution.

We consider the trajectories L(N,m, d) obtained by concatenating x transition lists Lk, each of length
N1. These lists may differ from one another, but each belongs to the set E(N1), as defined in the previous
step.

By construction, for any such trajectory L, we have:

T (iN1)(n) > n for all 0 < i ≤ x,

and, more strongly,
T (j)(n) > n for all 0 < j ≤ N = xN1,

which implies that the falling time σ(n) satisfies σ(n) > N .
We must now verify that, for all 0 < i ≤ x, the value T (iN1)(n) retains the same number of bits as n.
To do so, we use the general formula from paragraph 5.5 giving the residual term RN when L is the

concatenation of x sublists Lk:
We have the following formula for the residual term:

RN =
3m

2N

x∑
k=1

fkRk,

where

fk =

k∏
i=1

1

Fi
, and Fi =

3mi

2Ni
.

In our specific case, for all k, we have mk = m1 and Nk = N1, so that Fi = F1 for every i. Moreover,
the inequality

Rk ≤ RCeil(N1) ≤ m1

holds for all k, and we observe that
3m

2N
= F x

1 .

We deduce the following bound for RN :

RN ≤ RCeil(N1)

x∑
k=1

F x−k
1 ≤ m1

x−1∑
k=0

F k
1 .

This yields the inequality

RN ≤ m1 ·
1− F x

1

1− F1
.

Since F1 is approximately equal to 1, it is convenient to set

u1 = 1− F1.

With this notation, we can approximate
F x
1 ≈ 1− xu1.

Explicitly, this leads to the estimate:
RN ≤ m1 · x · F1,

where

F1 =
3m1

2N1
≈ 1, and m1 =

⌈
N1 ·

ln 2

ln 3

⌉
.

22



As a consequence, we obtain the following inequality for the xN1-th iterate of T :

n ≤ T (xN1)(n) = F x
1 · n+RN ≤ F x

1 · n+m1 · x · F1.

This expression shows that if T (xN1)(n) remains in the same power of two as n, then the intermediate
terms T (iN1)(n) do as well, since F x

1 and RN grow moderately with x.
The following table provides typical values for x = 20:

m1 d1 N1 = m1 + d1 F1
x m1 · x · F1

53 31 84 1.04265 1,062 ≈ 210
359 210 569 1.02155 7,188 ≈ 212.81

665 389 1054 1.000873 13,300 ≈ 213.7

16266 9515 25781 1.000509 325,328 ≈ 218.31

31867 18641 50508 1.000145 637,345 ≈ 219.28

Table 4: Values of F1
x and upper bound for RN when x = 20

In all cases, we observe that T (xN1)(n) < 1.05 · n for x = 20, and much less for the larger values of N1.
Moreover, if we consider integers n chosen in the interval [2m1−1, 2m1), the residual term RN is negligible
in comparison, which ensures the stability of the number of bits.

Under the reasonable assumption of a fairly uniform distribution of minimal values n in the intervals
[2i, 2i+1), we can estimate that in at least half of the cases, T (xN1)(n) retains the same number of bits as n.

The total number of transition lists is therefore nbx1 , and we retain approximately half of them, giving
nb = 1

2
· nbx1 , which leads to:

m1 d1 N1 = m1 + d1 nb = 2f(xN1)

53 31 84 20.83245·xN1−1

359 210 569 20.92536·xN1−1

665 389 1054 20.93540·xN1−1

16266 9515 25781 20.94909·xN1−1

31867 18641 50508 20.9495·xN1−1

Table 5: Values of nb = 2f(xN1) as a Function of x

7.4 Step 3: Application of the Random List Theorem to Lower Bound C

Suppose there exists a solution n ∈ [2ℓ−1, 2ℓ) satisfying the properties established in the previous steps, with
ℓ = m1 and N = xN1. In this case, for all 0 < i ≤ x, we have:

2ℓ−1 ≤ T (iN1)(n) < 2ℓ,

and therefore, due to the exact number of odd transitions per sublist, each T (iN1)(n) corresponds to sjp(i)(n).
Since T (xN1)(n) = sjp(x)(n) > n, it follows that:

sft(n) ≥ x+ 1.

The Random List Theorem (paragraph 4.2) provides a particularly effective tool for addressing this
type of question: it allows us to estimate the existence of such solutions n in the interval [0, 2m1), with
m1 = ⌈N1 · ln 2/ ln 3⌉ and N = xN1.

Approximately half of the integers in this interval also satisfy n ∈ [2m1−1, 2m1), which makes it possible
to focus on the relevant cases.

In the diagram above:

� The blue line represents the JGL boundary (a constraint to be respected);

� The green line is a valid trajectory, always staying above JGL;

� The black line is the classical boundary of the Catalan triangle (without the JGL constraint);

� Green point mark the endpoint of valid trajectories;

� Blue points represent trajectories admissible in the Catalan triangle but invalid under the JGL con-
straint;

� Black points lie outside both domains.
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Figure 3: Diagram of transition paths in Up(N, v0) relative to the JGL boundary.

Remarque 7.1 (Exhaustive Set of Lists). Let us consider the set of transition lists L(n,m, d) of length n
that lie above the JGL boundary. We distinguish three cases:

� For lists whose endpoint is represented by a point (such as point 1 in Figure 3) strictly inside the region
bounded by the JGL list: all such lists can be extended by any additional transition and will therefore
terminate at either point 2 or point 3. Consequently, regardless of the proportion of even values vn at
point 1, the probability that the extended list satisfies v0 < 2n is exactly half that of the original list
at point 1.

� For lists whose endpoint corresponds to a point (such as point 4) that has the same number of type 1
transitions as the JGL list and where the next transition in the JGL list is of type 1: this is an
nontrivial case where, at point 5, the probability that v0 < 2n is not exactly half that of point 4, but
rather multiplied by the proportion of odd values vn at point 1, which is approximately 1/2.

Unfortunately, it is precisely near such points 4 (which occur with relative frequency around 1/n
compared to points 1), close to the JGL boundary, that the number of lists is maximal, since the
binomial coefficient

(
n
m

)
decreases rapidly when m > n/2. In practice, however, discrepancies from

exact independence tend to cancel out across successive transitions.

� For lists whose endpoint corresponds to a point (such as point 6) that already has the same final
number of type 1 transitions as the JGL list: this is a nontrivial case where, at point 7, the probability
that v0 < 2n is not exactly half that of point 6, but rather multiplied by the proportion of even values
vn at point 1, which is approximately 1/2. Fortunately, the number of such lists is minimal. As in
the previous case, practical discrepancies from exact independence tend to cancel out across successive
transitions.

While we acknowledge that the lists are not formally independent, we still apply the Random List
Theorem, as the observed discrepancies are so large that the resulting contradiction may be viewed as
effectively formal.

Asymptotic Case. In the limit as N1 → ∞, we use the asymptotic approximation:(
N1

N1 · ln 2/ ln 3

)
∼ 20.949956N1 .

We then seek to satisfy the inequality (applying the theorem with n = m1 and N = xN1):

e = m1 − xN1 + f(xN1) ≥ 33,

which corresponds to a minimum of 4,294,522,559 > 231 solutions.
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This condition becomes:

N1 ·
ln 2

ln 3
− xN1 + 0.949956xN1 − 1 ≥ 12,

from which we deduce:

x ≤ −13/N1 + ln 2/ ln 3

1− 0.949956
≈ 12.6075.

This proves the existence of solutions for x = 12, but not beyond, in this restricted framework.

Concrete Examples. We numerically evaluate the expression e = m1 − xN1 + f(xN1) with x = 12:

� For m1 = 53, N1 = 84:

53− 12× 84 + 0.83245× 12× 84− 1 = −116.89 < −7.

Therefore, based on the rule Heuristic Approach to Establishing the Existence of Solutions (see Re-
mark 4.4), it is highly unlikely that any solution exists.

� For m1 = 359, N1 = 569:
−151.64 < −7.

Therefore, this case also admits no solution.

� For m1 = 665, N1 = 1054:
−153.06 < −7.

Therefore, this case also admits no solution.

� For m1 = 16266, N1 = 25781:

16266− 12× 25781 + 0.94909× 12× 25781− 1 = 594.87 ≫ 33.

Therefore, by applying the Random List Theorem together with the Berry–Esseen inequality (see 4.2),
we can assert that, with probability greater than 1 − 10−5, there are at least 4,294,522,559 > 231

solutions below 2m1 . More precisely, we even have:

231 × 2m1−12N1+f(12N1)−33 ≈ 2592.

Since we target the interval [2m1−1, 2m1), there remain about 2591 useful solutions. Since the distribu-
tion is binomial, we are formally guaranteed that at least one solution exists.

For an infinite number of values of N1 > 25781 (corresponding to upper approximations of X), the
number of solutions continues to grow.

Remarque 7.2. � The smallest solutions satisfying sft(n) ≥ 13 lie in the interval [216265, 216266). This
is counterintuitive but is explained by the asymptotic growth of

(
N1
m1

)
.

� Even though there are about 2591 solutions for ℓ = 16266, it is incorrect to believe that they are easier
to find. The total number of trajectories to test is at least:(

25781

16266

)12

≈ 20.94966×25781×12 = 2293798.

Under these conditions, a direct test over all integers in 216265 ≤ n < 216266 would be preferable,
requiring only 216265 evaluations. However, this remains infeasible today, since the probability of
success for a random test in this interval is approximately:

2591

216265
= 2−15674 ≈ 10−4718.

This estimation explains why empirical verifications, limited to n < 268, are necessarily insufficient to
detect such counterexamples.

7.5 Conclusion on the Conjectures Considered

� Conjecture 3.7, cited in the title of the article as: “There exists C ≥ 10 such that sft(n) ≤ C for
all n ≡ 3 mod 4”: If an upper bound C exists for the function sft(n), then necessarily C ≥ 13. The
authors were therefore correct to include a question mark in the title of their article, since the values
C = 11 or 12 are insufficient.

� Conjecture 5.2, asserting that sft(n) ≤ 2 for all odd integers n ≥ 25000, is contradicted. Indeed,
there exist integers n satisfying 25000 < n < 216266 such that sft(n) ≥ 13. Moreover, the theoretical
reasoning shows the existence of infinitely many such counterexamples.

25



� Question §3.2: For the integers n constructed in this analysis, the value sftx(n) coincides with
the x-th iterate of the application sjp in most cases. Consequently, there exist integers n such that
sjp12(n) > n, which implies sft12(n) > 1. The question posed on page 13 of [3], “Again, we may ask
whether sft12(n) = 1 holds for all odd n ≥ 3”, therefore receives a negative answer.

These results rely on a purely theoretical approach, independent of any explicit search. The existence
of counterexamples is guaranteed, although they are inaccessible to direct computation within the bounds
explored so far (n < 268).

The approach presented is based on a restricted subset of trajectories. It is plausible that one could go
beyond C = 13, but this would require a more general analysis of the relationships between sjp(n) and T .

Finally, the probabilities associated with the effective occurrence of such counterexamples within the
classical test ranges are extremely small, which explains their absence from experimental checks.

8 Answers to Questions and Conjectures Involving ft(n)

The questions addressed in this section correspond to the following points in the document SE :

� Conjecture 5.1: “We have ft(n) ≤ 4 for all n ≥ 2500.”

� Page 8: “We do not know whether ft(n) ≥ 17 is at all reachable.”

� Page 9: “Is it true that ft18(n) = 1 for all n ≥ 3?”

� Challenge: “If you do find any n ≥ 2500 satisfying ft(n) ≥ 5, please e-mail it to the authors.”

All these points concern the function ft(n), defined from the jump application jp(n), which retains only
specific values from the orbit of n under the action of T . The structure of jp prevents any explicit expression
of ft(n) directly in terms of the T -iteration.

As before, we focus on integers n whose successive iterates jp(i)(n) retain the same number of bits ℓ,
with jp(i)(n) > n for all i ≤ x.

The method is analogous to that used for sft(n), replacing N1 with ℓ in the trajectory constructions. We
again apply the Random List Theorem (see 4.2), this time for trajectories of length N = xℓ, and evaluate
the existence of solutions n < 2ℓ such that ft(n) ≥ x+ 1.

Although we consider only a restricted subset of possible trajectories, we still obtain significant lower
bounds for the value of ft(n).

Asymptotic Analysis. In the limit as ℓ → ∞, the number of admissible trajectories grows like
20.949956xℓ. We therefore seek to solve the inequality:

e = ℓ− xℓ+ f(xℓ) ≥ 12,

which guarantees at least 210 = 1024 solutions. This leads to:

ℓ− xℓ+ 0.949956 · xℓ− 1 ≥ 12, ⇒ x ≤ −13/ℓ+ 1

1− 0.949956
≈ 19.98.

We can therefore assert that there exist integers n such that ft(n) ≥ 20.

Explicit Evaluations. Here are some concrete cases:

1. For ℓ = 569 and x = 4:

ℓ− xℓ+ 0.92536× xℓ− 1 = 398.12 ≫ 33 ⇒ at least 2390 solutions.

2. For ℓ = 25781 and x = 18:

ℓ− xℓ+ 0.94909× xℓ− 1 = 2154.81 ≫ 33 ⇒ more than 22150 solutions.

Conclusions Related to the Statements in [3]

� Conjecture 5.1 is contradicted starting from ℓ = 569 > 500, since we theoretically observe integers n
such that ft(n) ≥ 5.

� The answer to the question on page 8 is positive: according to case 3), it is possible to reach (and
exceed) ft(n) ≥ 17.

� The answer to the question on page 9 is negative: for many values of n, we have jp(18)(n) > n, so
ft18(n) > 1.
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� Regarding the challenge, the results obtained imply the theoretical existence of infinitely many coun-
terexamples. However, an exhaustive test over n ∈ [2ℓ−1, 2ℓ) for ℓ = 569 remains infeasible. The
probability that a random test in this interval identifies a solution is approximately:

2390

2569
= 2−179 ≈ 1.5× 10−54.

This explains why the authors will probably never receive the email they invite readers to send.
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