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Abstract

The preprint arXiv:2107.11160v4, entitled “Is the Syracuse Falling Time Bounded by 1277, authored by
Shalom Eliahou, Jean Fromentin, and Rénald Simonetto, presents a collection of conjectures and questions
concerning the falling time in the standard iteration of the Syracuse sequence (also known as the 3z + 1
sequence).

In this note, we show that the set of conjectures formulated in that work can be addressed in a unified
manner by applying the Random List Theorem.

This theorem provides a decisive tool for analyzing the dynamics of the Syracuse sequence. In particular,
it allows one to give formal answers to questions concerning the falling time and provides a systematic
method for studying such properties.

It is important to note that the empirical regularities motivating the conjectures originate from a sta-
tistical bias inherent in the observable data set, which corresponds to the range of integers less than 2%,
Beyond this bound, asymptotic behaviors emerge that contradict the initial regularities, even though the
underlying dynamical rules remain unchanged.

In particular, we establish the theoretical existence of counterexamples to several of the conjectures
proposed in arXiv:2107.11160v4. However, due to current computational limitations, it is not possible to
exhibit such counterexamples explicitly.

1 Introduction

The study of the dynamical behavior of the Syracuse sequence (also known as the 3x 4 1 iteration) continues
to generate significant interest in mathematics. One recent approach focuses on analyzing the falling time
of an integer n, which is defined as the number of iterations required for the sequence to produce a value
less than n.

In this context, the document SE [3], authored by Shalom Eliahou, Jean Fromentin, and Rénald Simon-
etto, proposes a collection of precise conjectures based on numerical observations performed up to 2°°. These
conjectures concern, in particular, the integers that achieve maximal falling times within specific intervals,
as well as the structure of their trajectories under the iteration of the function 7.

The present article provides answers to these conjectures by relying exclusively on the Random List The-
orem. This theorem enables one to establish the systematic existence of integers whose behavior contradicts
the regularities observed at small scales in the Syracuse sequence.

The method reduces the problem to an explicit enumeration of admissible transition lists for each case
under consideration. In the present context, these enumerations are significantly more complex than those
involved in the proof of the conjecture itself [I], due to the specific cases studied in [3].

In particular, we show that Conjectures (5.1) and (5.2), as formulated in [3], are either incorrect or can
be improved. Moreover, we provide detailed answers to the questions raised in Section 3.2, as well as those
stated in the title, on page 8, on page 9, and in the final challenge of that document.

For each of these statements, we highlight the source of the empirical bias that led to their formulation.
This bias results from the intrinsic limitations of the numerical data, which is restricted to integers less than
28 'We show that, in the asymptotic regime, the observed tendencies reverse and the conjectures cannot
be maintained.

The counterexamples predicted by our analysis are purely theoretical: their existence is proved, but no
explicit instance can currently be exhibited due to computational limitations.

For the sake of a self-contained exposition, the results and theorems in Sections 2] [B] @] [] and [6] have
been reproduced from the unpublished manuscript “A4 Combinatorial Proof of the Syracuse Conjecture Using
Transition Lists” [1], authored by the present author.

The reader is also invited to consult the document SE [3], which the present article addresses in detail.

In Section |7} we address the questions and conjectures involving sft(n).

In Section we consider those involving ft(n).

*jacques.ballasi@bajaxe.com



This article constitutes a formalized synthesis of various communications by the author concerning the
document [3] (denoted SE hereafter). These include the email sent to the authors on December 3, 2024,
the presentation given on December 18, 2024, at the LMPA laboratory in Calais (France), and subsequent
exchanges.

Finally, a complementary HTML+JavaScript file [2] allows the reader to reproduce all the computations
presented both in the document SE and in the present article.

2 Definitions

2.1 Reduced Syracuse Sequence: (v,)

%L, if vy, is even (type 0),

Upt1 = 41 with vg > 0.
31}%7 if vy, is odd (type 1),

Remarque 2.1. The parity of v, still determines the type of transition. While the sequence could be
written as v, = T (vg), we retain the recurrence form.

2.2 Transition List £(N,m,d)

A transition list of length N is a sequence of N transition types ¢; € {0, 1}, representing type 0 and type 1
transitions, respectively. It is denoted:

L(N,m,d) = (to,t1,...,tN-1),
where m is the number of type 1 transitions, and d = N — m is the number of type 0 transitions.
e m: total number of type 1 transitions (multiplications);
e d: number of type 0 transitions (divisions by 2);
e N =m + d: total length of the transition list.
For each prefix of the list of length n < N, we define:
® m, = Z;:Olﬂé{ti:l% the number of type 1 transitions among the first n elements;
® d, =n — my,, the number of type 0 transitions among the first n elements.

Exemple 2.2. For vg = 7, the sequence is:

751151752 % 13

Then: £(4,3,1) = (1,1,1,0).

Remarque 2.3. The list £L(N,m,d) is also called a parity vector, since each t; corresponds to the least
significant bit of v;.

2.3 Partial Order on Transition Lists

We define a partial order < on transition lists of length N by comparing the cumulative number of type 1
transitions at each prefix of the list.
Let £1 and L2 be two transition lists of length N. We write:

L1 <Ly ifandonlyif forall0<n <N, mpr, <Mncy,

where m,, 2 denotes the number of type 1 transitions among the first n elements of list L.
This relation is a partial order: it satisfies reflexivity, antisymmetry, and transitivity.
We also define the associated strict order:

L1 <Ly ifandonlyif forall0<n <N, mnrz, <Mnc,-

Remarque 2.4. This is not a total order. There may exist two lists £1 and L2 such that neither £1 x L2
nor L2 < £1 holds. In such cases, the lists are said to be incomparable under this relation. This situation
arises when the distribution of type 1 transitions differs in position but not in number.

Exemple 2.5. Let £; = (1,0,1) and £2 = (0,1,1). The cumulative sums of type 1 transitions yield:
(m1,ma,m3) = (1,1,2) for £1, and (0,1,2) for Ls.

Thus, neither £; < L2 nor L2 < £1 holds: the lists are incomparable.

Remarque 2.6 (Interpretation). This order reflects the temporal positioning of type 1 transitions: a list
that accumulates multiplications more slowly (i.e., later in the sequence) is considered "smaller” in this
ordering.



2.4 Solutions of a Transition List

We say that the initial or starting value vg
e follows the transition list Ly,
e realizes the transition list Ly,
e or is a solution of the transition list Ly,

if and only if the first N transitions of the reduced Syracuse sequence starting from vy are exactly those
specified by Ln.

We say that vo is the minimal solution of Ly if vo < 2N The existence of such a solution will be
established in Section [3.4]

2.5 Approximate Reduced Syracuse Sequence: (v))

We now introduce an approximate version of the reduced Syracuse sequence by neglecting the constant term
in the type 1 transition. Specifically, in place of the expression 3v,, + 1, we consider only 3v,,. The resulting
sequence (v},) is defined by the recurrence:
'Ul
—=, if v, is even (type 0),
'U;L_H = 32 , with vy = vo.
~if v, is odd (type 1),

2 ’
Remarque 2.7. This approximation is especially meaningful when the initial value vo is large and the
number of steps n remains moderate. Crucially, the transition types of the approximate sequence v’ coincide
exactly with those of the original sequence v, since the parity (and thus the transition vector (¢;)) is preserved.

However, the values of v), may be non-integer, which introduces a discrepancy compared to the actual
sequence. To quantify this difference, we define a correction term 7, such that:

!
Un = Up + Tn.

This decomposition will be used later to precisely analyze the divergence between the exact and approximate
sequences.

3 Binomial Distribution of Initial Values Below a Threshold

Théoréme 3.1 (Binomial Distribution of Minimal Initial Solutions). Let nb € N, and consider a set of
nb independent and distinct transition lists L1, ..., Ly, each of length N. Assume each list L(N,m,d) is
random, with a proportion pr = m/N of type 1 transitions. Let k = N —n and Ry denote the number of
manimal initial solutions vg < 2" = oN—k gssociated with these nb lists.

Then, for any 0 < k < N — 10, the random variable Ry follows the binomial distribution:

Ry, ~ Bin(nb, 1/2%).

The proof of the theorem is broken down into several intermediate results, presented as lemmas in the
following subsections.

3.1 Lemma: the Probability that v; is even is % for vy > 4

Lemme 3.2. Let v > 4 be an integer chosen uniformly in the interval [27,2"") with n > 2. Then the
parity of v1, defined by the reduced Syracuse iteration

v /2 ifvo=0 mod 2,
vV =
"1 Gu+1)/2 ifro=1 mod 2,

the parity of vi is uniformly distributed :
1
P(v1i =0 mod2)=P(vi =1 mod 2) = 3
Proof. Let us write the binary decomposition of vg:

N
v =Y a, 2", witha, € {0,1}.
p=0

Case 1: vg is even (ap = 0)



Then
v N ) N-1
0= =0 =Y a2
p=1 p=0
The parity of v1 is given by ai1. Since N > 4, the bit a; exists and is uniformly distributed in {0, 1}:

1
P(v1 even | vo even) =P(a1 =0) = 3
Case 2: vg is odd (ap = 1)
We have:

_3U0+1_1+U0+21}0

vl 2 2

Replacing vg by its binary expansion:

N N
b 1+Zp:0ap-2p+zp:0ap~2p+1 —Nzﬂa' 9P
1= 5 _p:O p L

The least significant bit af, depends on:
ap=(1+ap+a) mod2=(1+1+a;) mod2=aj.

As in the even case, the parity of v is determined by a1, which is uniformly random. Hence:

P(vy even | v odd) =P(a; =0) = %

O

Remarque 3.3. This lemma shows that the parity of vy is exactly balanced as soon as vy > 4, i.e., when

the binary representation of vy has at least two digits. This is an exact property, not an asymptotic estimate.
Some sources incorrectly state that this equiprobability only holds “in sufficiently large intervals.” For

instance, the May 2025 version of the French Wikipedia article on the Syracuse conjecture claims:

“the parity of the result is independent of that of v, if v is randomly chosen in a sufficiently large
interval.”

However, as the above proof shows, the property already holds perfectly for all vo > 4, without any asymp-
totic assumption.

It is also important to note that this equiprobability cannot be extended to subsequent values v, since
the trajectory is deterministically correlated with vy. Assuming independence along the entire sequence is a
common error in probabilistic models of the Syracuse dynamics. While the lemma justifies local randomness
at the first step, caution is required when extending this reasoning to full orbits.

3.2 Lemma: Bijection between Transition Lists of Length N and Minimal
Initial Values vy < 2" That Realize Them
Lemme 3.4. For every integer N > 1, there is a bijection between:

e the set Ln of binary transition lists (to,...,tx—1) € {0,1}";

o and the set of initial values vo < 2V so that the sequence (vi,...,vN) generated by the reduced Syracuse
iteration follows the transition pattern (to,...,tN—1).

Each transition list uniquely determines a minimal initial value vo < 2N that realizes it. Furthermore, all
other values generating the same transition list are of the form:

oM =vo+n-2V, neN

Remarque 3.5. This relies on extending the definition to include vy = 0, which is then considered as the
minimal solution for all transition lists containing exactly N transitions of type 0 (and no transitions of
type 1), instead of assigning vo = 2.

Proof. The reduced Syracuse dynamics assigns to any integer v a transition list (to,...,tn—1) defined by:

P 0 if v; is even,
YT ifegis odd,
where v;11 = T'(v;) with T the reduced Syracuse function.

We prove by induction on N that for each binary word of length N, there exists a unique minimal
vo < 2N realizing it.



Base case N =1 There are two possible transition lists:
e to =0 (even), realized by vop = 0 (with the extension);
e tg =1 (odd), realized by vg = 1.

Each transition bit is thus realized by a unique vg < 2.

Inductive step Assume the result holds for lists of length N: for every Ln = (to,...,tn—1), there exists
a unique minimal value so < 2V realizing it.
Let Ln+1 = (to,...,tn) be a list of length N + 1.
By the inductive hypothesis, the prefix (to,...,tn—1) corresponds to a unique value so < 2. Consider
the two candidate initial values:
v(()o) = So, ’U(()l) = S0 + 2N,

Both share the same lower N bits and thus follow the same first N transitions. Let m be the number of
type 1 transitions among (to,...,tn—1). Then, by recurrencﬂ their corresponding values at time N differ
by 3™:

1}5\‘,” =sy+a- 3.

We now determine which of the two values wéa> satisfies tn, by testing the parity of v](\‘,l):

e If sy =tn (mod 2), choose a = 0;

e Otherwise, choose a = 1.

(0) (1)
0

Thus, exactly one of the two values vy’ or vy’ matches the full transition list Lx41, and its value is

strictly less than 2V F1,

Infinitely many solutions Since adding 2"V does not affect the first N transitions, any integer of the
form:
v(()n) :vo+n~2N, n €N,

also realizes the same transition list. Therefore, for each Ly, there exists an infinite arithmetic progression
of initial values with a unique minimal representative in [0, N )-

O

Remarque 3.6 (On the precedence of the lemma). In the standard case, this lemma corresponds to results
previously established by Riho Terras (1976) [5] and C. J. Everett (1977) [4], as kindly pointed out to me
by Shalom Eliahou in a personal correspondence dated December 18, 2024.

These references were not identified in earlier versions of this document (prior to version 3.1.2), as the
original articles are written in English and adopt a different formalism.

That said, the main contribution of this section lies in the corollary that follows, which, to the best of
our knowledge, constitutes a new result within the specific framework developed here.

ILet us detail the first transition:
The value vou has the same parity as so, corresponding to to € {0, 1}.

e If to = 0, then sg is even (since s follows L), and

(a) N
+a-2
via) _ v02 _ 50 ; _ 520 +a-2N"1 =g 4q.2VN1,

e If to =1, then sg is odd (since sg follows L), and

:sl+a-3~2N71.

@ 3P +1 3(sg+a-2¥)+1  3sy+1 a-3.2N-1
T T T 2 T T2 T

The value fuga) has the same parity as s1, which corresponds to t1.

One can easily prove by induction that, for all 0 < n < N,
Uéa) =sp+a-3mn . 2N-n

where m,, denotes the number of type 1 transitions among the first n transitions of £ .
and forn =N :
UE\L;> =sy+a-3".



3.3 Corollary of Lemma : P(uy < 2¥7') = L for Transition Lists of
Length N

Corollaire 3.7. Let N > 1. Among all transition lists of length N, the probability that the minimal initial
value vy satisfies vo < oN=1 s ezxactly
_ 1
]P)(’U() < 2N 1) = —=.
2
Proof. We consider only the minimal initial values vo < 2V arising from the bijection of Lemma
Given a list of length N, the construction extends a prefix of length N — 1 by one final bit ¢txy—1. The
two candidates for vg are:
v(()o) = So, vél) =50 +2V 1.

Only one of these two values satisfies the final transition, depending on the parity of sy_1 and the bit
tn—1. The minimal representative vg = sg is selected if and only if:

(tv—1 =0 and sy—1 iseven) or (txy—1 =1 and sy—_1 is odd).

Assuming, as shown in Lemma that P(sy_1 even) = 1, and letting p denote the probability that

tn—1 = 1, we compute:
1 1 1
P(Uo—SO)—(lfp)~§+p-§_§.

Hence, among all transition lists of length N, the minimal initial value v falls below 2V =1 with probability
exactly
- 1
P(UO < 2N 1) = 5

O

3.4 Corollary of Lemma P(vy < 2V7%) = & for Transition Lists of
Length N

Corollaire 3.8. Let N > 1 and 0 < k < N. Among all transition lists of length N, the probability that the
associated minimal initial value satisfies vo < oN—k 4o ezactly
N—k 1
P('UQ <2 ) = 27k
Proof. By iterating the reasoning of Corollary k times, we observe that each additional transition bit
splits the space of minimal initial values in half. Starting from the full interval [0, oN ), the probability that
a randomly constructed list yields a minimal vy below 2V =% is thus

_ 1
P('U() < 2N k) = 27

This also yields the following consequences:
e The probability that v falls in the interval [2V =% 2NV =F+1) is likewise 2—1,6;

e By complement, the probability that vo > 2V 7% is 1 — zik

2N7k:

Finally, to have a nonzero expected number of minimal values vy < in a sample of ng = 27™)

transition lists, we require:

o f(N)

27’9 >1 if and only if k< f(N)
This inequality gives a critical threshold beyond which the probability of sampling such a value becomes
negligible. O

Remarque 3.9. This exact power distribution is crucial in establishing bounds that scale logarithmically
with N in the Random List Theorem. It reflects the uniform binary structure induced by the bijection of
Lemma [3.41

3.5 Iterated Binomial Reduction

Lemme 3.10 (Iterated Binomial Reduction). Letnb € N, and define a sequence of random variables (Ry)k>o0
recursively by:
Ro =nb, and Ry~ Bin(Rk-1,1/2) forallk > 1.

Then, for every k € N, the random variable Ry, follows the binomial distribution:

Ry ~ Bin (nb, 2%) .



Proof. We proceed by induction on k.
Base case: for k = 0, we have Ry = nb, which is equivalent to Ry ~ Bin(nb, 1), i.e., Ry ~ Bin(nb, 1/2°).

Inductive step: suppose that for some k > 0, we have

Ry, ~ Bin (nb, 2%) .

Then, conditionally on Ry = r, the next variable satisfies
Ri+1 | Rk =r ~ Bin(r,1/2).

Thus, we can write:
Ry,
Ryt1 = E Yi,
i=1

where the Y; are independent Bernoulli(1/2) variables, independent of Ry.
Since Ry ~ Bin(nb, 1/2¥), we can express:

nb
Ry = ZX“ where X; ~ Bernoulli(1/2%),

i=1

and the X; are independent.
Fach X; = 1 indicates that the i-th item survived the first k filtering steps. For Ryi1, we apply one
more independent Bernoulli(1/2) filtering to each X; = 1.
Therefore, each i € {1,...,nb} survives the first & + 1 steps with probability:
1 1 1

P(survival) = oF 3 = g

By independence, we conclude that:
. 1
Ri+1 ~ Bin | nb, o1 ) -

Conclusion: the result follows by induction: for all k£ € N,

1
Ry ~ Bin (nb, 27) .

3.6 Proof ot the Theorem

Proof. Each transition list £ defines a unique minimal solution vy < 2% under the convention that vo = 0
corresponds to the all-zero transition list (see Lemma [3.4]).

For each transition ¢tny_x—1 in each list, we consider vy to be the minimal initial value that solves the
first N — k — 1 transitions.

We know that vy < 2V k1.

Moreover, vy is also the minimal solution for the first N —k transitions of £ if and only if ¢ y_x_1 matches
the "natural” transition from vg, that is, if

((tn—k—1 =1)and vn_g—1 isodd) or ((tn—kr—1 =0)and vn_k_1 is even).

The probability of this event is
1 1 1
pﬁ'§+(1—p£)'§:§«

Indeed, if the transition does not match, then the minimal solution for the first N — k transitions of £
would be vg + 2V 7% > 2V =% "and thus no longer strictly below the threshold.

We now prove by induction that Ry ~ Bin (nb7 2%)

Base case: For k£ = 1, we consider the final transition tx_1 of each transition list. Given that the
minimal initial value vo for the first N — 1 transitions satisfies v < 2V 71, the value vg also solves the full
list of N transitions if and only if ¢txy_1 matches the natural parity transition induced by vy—1. This occurs
with probability 1/2, since the transition is chosen at random and independently of vg, and the parity of
vn—1 is balanced in expectation.

Since the nb transition lists are all distinct and independent, we perform nb independent Bernoulli trials
with success probability 1/2, one for each list. It follows that

R ~ Bin(nb, 1/2).



Inductive step: Assume that Ry_; ~ Bin(nb,1/2F71).
By iterating the same reasoning at step k, after analyzing the last k — 1 transitions of each list, each
remaining minimal value survives the next transition with probability 1/2, independently. Therefore,

Ry ~ Bin (Rk_l, %) .

Then, by applying Lemma |3.10} we deduce that

. 1
Ry ~ Bin (nb, 27) .
This completes the proof by induction.
Therefore, we conclude that the number of minimal initial solutions strictly less than 2V =% follows the
binomial distribution Bin(nb, 1/2%).
O

4 Random List Theorem

[f(N)1 With number of lists nb = 2[/(N)]

| e—e Statistic distribution
e—e Upper bound of remaining solutions
e—e Lower bound of remaining solutions

W £ |

log, (solutions)
T

N = [F(N)1;0)

log, (vo)

Figure 1: Number of solutions vy < 2™

Remarque 4.1 (Idea). The probability that the minimal initial value vy of a transition list £L(N,m,d)
satisfies vg < 2" is 2N ",
If 2/ random lists are tested, then we expect

E [#{vo < 2"} ~ 2/ o=V = 9¢,

Hence, the shift index e provides a direct estimate of the expected number of solutions.

Théoréme 4.2 (Random List Theorem). Let a set of nb = 27 N) transition lists of length N, independently
and randomly generated. Each list L(N,m,d) may contain an arbitrary proportion m/N of type 1 transitions,
without any specific constraint.

For a given integer n < N, let R,, denote the number of minimal initial values vo < 2" among the set of
transition lists.

Then R, follows the binomial distribution:

. 1
R, ~ Bin (Qf(N)7 2N_n) .

This distribution follows directly from the independence of the lists and the successive filtering mechanism
applied to the last N — n transitions.
Define:
e:=n— N+ [f(N)].
(i) Bounds via the Central Limit Theorem.
Let 4 < z <6 be a real number. Then, with probability at least 1 — €, where e = e~

— ife>"7, then R,>64—82z,
— ife <6, then R, <644 8z.

22/2.



(ii) Bounds via the Berry—Esseen inequality.

For any e < 1073, define:
K = {2 -log, (Oaj)—‘ + 1.

Then, with probability at least 1 — €, we have:
—ife> K, then Ry, > min:=25"1—/2In(1/e) - V2K,
—ife< K, then R, < maz:=2% +.,/2In(1/e) - V2K.

The following values are guaranteed for some standard thresholds:

e K min max
1073 | 20 520,481 1,052,383
107% | 26 33,519,272 67,144,024
107° | 33 | 4,294,522,559 | 8,590,379,329

Proof. According to Theorem we have
R, ~ Bin(nb, 1/2% ™).

(i) Central Limit Theorem approximation:
Let k = N — n, the number of suffix transitions under analysis.

We apply the classical Central Limit Theorem to the sum of nb independent and identically distributed
Bernoulli variables with constant parameter p = 1/2F.

This sum defines the variable R,,, with expected value and standard deviation given by:

nb
p:=E[Rn] =nb-p= 3,

o :=+/Var(R,) = v/nb-p(1 —p) = Z—s (1 — 2%)

As soon as u = ;—,ﬁ’ 2 30, the normal approximation becomes accurate in practice. Asymptotically, we

have convergence in distribution:

Zo = B2l D 0, 1).

o nb—soo
We now derive probabilistic bounds for R,, using a Gaussian tail threshold z > 0.
— Upper bound (tail on the right):
P(Z, <z)>1—¢ whenever R, <p+z-0, withe:=1—-o(2).

We bound successively:

nb nb 1 nb nb

Now suppose nb = 2/ < 2[/MT Then,

ol F(N)] oM F(N)

Define e :=n — N 4 [f(N)]. Then e < 6 is equivalent to k > [f(NN)] — 6. Since R,, is decreasing
in k, the upper bound is maximal when k = [f(N)] — 6. Therefore:

ife < 6then R, < 64 4 8z.

— Lower bound (tail on the left):
Using the Central Limit Theorem, for any z > 0, we have:

P(Z, >z) >1—¢ whenever R, >p—2z-0, withe:=1-o(2).

We start from the inequality:

nb nb 1 1 nb nb
Rn>27k—2' 27 _27]@ >2’€7_1—Z' Qk_IA




Now suppose nb = 2/ (V) > 9IF(N)T=1  Then:

ol F(N)] -1 2TF ()]

Define e :=n — N + [f(N)]. Then e > 7 is equivalent to k < [f(N)] — 7.
Since R, is decreasing in k, the lower bound is minimal when k = [ f(N)] — 7. Therefore:

ife > 7Tthen R, > 64 — 8v/2z.

Numerical remark: For z > 4, the Mills ratio gives z ~ y/21In(1/¢), hence ¢ ~ e =2,

(ii) Approximation with Berry—Esseen Inequality:

— Berry—Esseen Inequality

We apply the Berry—Esseen inequality to the centered and normalized variable
R,—mnb-p

Vb (i p)

where R,, denotes the number of minimal initial values below 2" among a large set of nb = 2f ()
transition lists of length N. Although the process is fundamentally deterministic, the distribution
of R, can be approximated by that of a binomial variable Bin(nb,p), with p = 1/2¥ ", based on
probabilistic modeling of parity transitions.

This allows us to apply the standard form of the Berry-Esseen inequality, which quantifies
the convergence to the normal distribution for sums of independent and identically distributed
Bernoulli(p) variables.

The third absolute centered moment of a Bernoulli variable is given by

p=E[IX —p[’] =p(1—p)*>+ (1 —p)p’ =p(1 —p)(1 —2p+2p°),

which is finite for any fixed p € (0,1). The variance is 0 = p(1 — p), and the Berry-Esseen
inequality yields:
Cp C-(1-2p+2°) G

Bz < 2) =2 < 57 = (p(1—=p))*/2-v/nb ~ v/nb’

with C' < 0.56 an absolute constant.
Let

C-(1—2p+2p%)

(L —p)t/>
which depends only on p. This formulation enables us to derive explicit quantitative bounds
for the probability that R, deviates from its expectation, using Gaussian approximations with
computable error margins.
Getting the threshold

We aim to ensure that P(Z; < z) > 1 — ¢, and we seek to determine for which values of nb this
inequality holds.
Approximating the Gaussian tail for large z using the classical Mills ratio :

Cp =

1 2
1—®(2) ~ e * /2
) zV2m
we substitute z := /21In(1/¢e), which yields:
1—®(2) =~ °

1/47rln(1/8).
According to the Berry—Esseen inequality:
Cy

P(Zk < z) > ®(2) —

g

Therefore, we require:
Cp

D(z) — NG

By substituting the approximation for ®(z), we obtain:

>1—e.

€ Cp

4mn(1/e) * Vnb

< e.

10



. . £ 1
To simplify, note that for small e, we have In(1/e) > 1, so Jaas < e. Therefore, this term

becomes negligible, and we may approximate the condition by:

Cyp L (Cp > ?
< e, which implies nb> | —/ ] .
vnb P €

For large N —n (i.e., when we filter over a large number of final transitions), we have p = 1/2V " «
1, and the constant becomes:

C-(1-2p+2%%) _ C
p(1—p) VP

Substituting this into the bound yields the condition:

2
nb > (g> LgN-n,
€

Cp =

Taking logarithms (base 2), we obtain:
C
log, (nb) > 2log, < + (N —n).
Let us define nb = 2/™). Then the inequality becomes:

FIN) > 2log, (g) +(N=n).

This is satisfied as soon as

Let us define the threshold:
C
K = |2log, = +1, andlet e:=n—N+[f(N)].

Then the condition becomes simply:
e> K.

Upper bound (tail on the right): By applying the Berry—Esseen inequality at depth nx =
N —[f(N)] + K (i-e., when e = K), we obtain:

P(Zn, <z)>1—¢, withz=/2In(1/e).

R, N
Since Zy, = Kiw, this implies:
o

Ry, <p+z-0, with probability at least 1 — ¢,
where

. onb 2/ (V) < 9K
T 9N-ng  9[f(N)]-K — ’

a:\/\m:,/u<1—ﬁ><\/ﬁ§\/27.

Therefore, with probability at least 1 — &, we have:

p=E[Rn]

and

Ry <28 4+ 2. V2K,

Finally, since R, < Ry, for all e < K i.e. n < ni (as the sequence Ry is increasing in k), the
upper bound on R, also applies to R,.

ifeSKthean<2K+z-\/2K.

11



— Lower bound (tail on the left):
Since
IP(Zn < 2) — ®(2)| = [P(Zn 2 —2) — (=2)|,
we may reuse the previous estimates in the opposite tail.
By applying the Berry—Esseen inequality at depth ngx = N — [f(N)] + K (i.e., when e = K), we

obtain:

P(Zn, > —z)>1—¢, with z=+/2In(1/e).

R, —
Since Zy, = "Kiu, this implies:
o
Ry, > p—z-0, with probability at least 1 —¢,
where o
_ o omb 2 K1

po=ElRn ] = oN-ng — 2[f(N)]-K = 2 ’

and

a:\/Var(RnK):Mu(l—w%K) < Vi < V2K,

Therefore, with probability at least 1 — ¢, we have:
Ry, > 2571 — 2. V2K,

Finally, since R, > Rn, for all e > K ie. n > nk (as the sequence Ry is increasing in k), the
lower bound on R,, also applies to R,.

ife > Kthen R, > k-1 _ . VoK,

Remarque 4.3 (Random List Theorem for Non-Random Sets of Transition Lists).

Conclusion. For sets of transition lists delimited by suitable boundaries, the Random List Theorem can
be applied without any special modification.

In the proofs, we would like to apply the Random List Theorem to sets of transition lists that are neither
random nor independent.

If one were to apply the theorem to the entire set of 2V transition lists of length N, then for every
0 < n < N we would obtain R, = 2"V~" by the bijection (see 7 and nothing would be random. The
difficulty is that if one considers an arbitrary subset of transition lists, without any specific structural
property, the extreme cases cannot be excluded, which makes it difficult to draw any meaningful conclusion.

To overcome this difficulty, recall that m, denotes the number of type 1 transitions among the first
n transitions of £. With this notation in place, we shall apply the Random List Theorem to a family of
transition lists £(IN, m, d) satisfying the condition

my > [kn] forall0<n <N,

together with either [kN] < m < N or m = [EN], where k = In(2)/In(3), for instance for the list Ceil(IV)
that we shall study later in Section [6]

Each such list, as in Figure |2} can be interpreted as a discrete path from (0, 0) to (d, m) consisting of N
elementary steps, where each step is either:

e a horizontal move (type 0 transition), increasing d by 1; or

e a vertical move (type 1 transition), increasing m by 1.

In the diagram above:

e The blue line represents the Ceil boundary (a constraint to be respected);

e The green line is a valid transition list, always staying above Ceil;

e The black line is the classical boundary of the Catalan triangle (without the Ceil constraint);

e Green points indicate the endpoints of valid transition lists for N = 15 (only the intersection point

with Ceil(N) when we restrict to m = k- N);

Note that transition lists passing through the points on the vertical axis (0,n) have the minimal solution
vo > 2771

The number of lists passing through each point (d, m) is at least on the order of N, which is very large,
except at (0,m) where m is the extremal value of m; in that case, there is only a single list, but its minimal
solution is far too large and does not belong to the set of admissible solutions.

12
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Figure 2: Diagram of transition paths relative to the Ceil boundary.

For n =m +d > 2, at the point (d, m) the probability that v, is even is equal to 1/2.

For the minimal solution vy of a transition list to be less than 2"~ !, and therefore equal to the value
vo obtained for the restriction to the first n — 1 transitions, it is necessary that the transition ¢,—1 be the
“natural” transition taking vn,_1 to v,.

Conversely, for the minimal solution vy of a transition list to be greater than 2"~ !, and therefore not
equal to the value vg obtained for the restriction to the first n — 1 transitions, it suffices that the transition
tn—1 1s not the natural transition from v,_1 to vs.

e For most points (interior points), such as point 1 with coordinates (3,11): the lists passing through
point 1 originate either from point 2 or from point 3.

e For points on the boundary that are preceded by a single “East” step, such as point 4 with coordinates
(5,9): the lists passing through point 4 originate only from point 5.

e In the case where the maximal value of m is taken to be [kNT], then for points with maximal ordinate,
such as point 6 with coordinates (2, 10): the lists passing through point 6 originate only from point 7.

In all these situations, a very large number of lists pass through the point, which means that the proba-
bility of v,_1 being even is always 1/2. For the minimal solution vo of a transition list to satisfy vo < 2™},
it is necessary that the considered transition be the natural one, i.e., that v,_1 is odd at point 2 or even
at point 3. Hence, statistically, there are twice as few lists after accounting for transition ¢,,—1 whose min-
imal solution is less than 2"~ ! as there were with minimal solution less than 2" before accounting for this
transition.

Repeating the same reasoning for all the last transitions, we conclude that for these sets of non-random
and non-independent lists, the same result holds as in the random case.

We may note that translating the Ceil boundary horizontally to the right by prefixing it with 2p type 0
transitions does not alter the previous argument.

Under these circumstances, the Random List Theorem can be applied without any special modification.

Remarque 4.4 (Heuristic Approach to Establishing the Existence of Solutions). Using the Central Limit
Theorem, we observe that in the case e = 6, which is equivalent to N —n = [f(N)] — 6 and hence
2[F(NT /oN=" — 64 we obtain:

R, <64+82=96<128 =27 for z =4.

This indicates that the number of minimal values is almost halved at each step when analyzing the last
N — n transitions. What initially appeared chaotic at the individual level becomes a smooth continuum
when considering the system globally.

Even though there is no rigorous mathematical justification for it, the process being deterministic allows
us to reasonably conjecture that, by adding 74+6=13 more steps (to account for the remaining fluctuations),
we reach R,_13 = 0, meaning that there are no solutions vy < on—13,

13



From this, we heuristically infer the following rule:

If e < —7, then R, = 0 (no solution vy < 2") with very high probability.

The probability is increasing as e < —7.
This rule is not mathematically rigorous, but it provides a useful intuition before applying formal rea-
soning with larger residual solutions.

Remarque 4.5. The validity of this estimate relies on the assumption that the sample of transition lists
is drawn uniformly at random. Biases in the selection—such as favoring lists associated with small vp—can
significantly distort the statistical outcome. This has been confirmed by discrepancies observed in numerical
experiments based on non-uniform or partitioned samplings.

Remarque 4.6. In earlier versions of this document (up to version 4.2.1 inclusive), the probabilistic rea-
soning relied on Corollary which states that P(vo < 2V %) = 2% To bound the number of values
vo < 2V7%_ denoted by Ry, the last k transitions were considered, and the Central Limit Theorem was used
to estimate the associated binomial distribution at each step.

At each stage, Rr was bounded above and below around the expected proportion, using an interval
centered at n/2 with growing width. This allowed a valid interval to be maintained at each step, but
without control over the global error probability.

The weakness of this approach lies in the fact that extreme cases (beyond a certain number of standard
deviations) were not taken into account. The assumption that Ry could not fall outside this interval relied
on the idea that extreme cases could not occur, due to the underlying process being deterministic rather
than purely random — a mathematically incorrect reasoning.

Indeed, if one fixes a threshold z, = 4, corresponding to a local error e ~ 3.35 x 10™%, then the
probability that at least one of the k steps falls outside the interval is bounded above by kej (since the
probability of a union is less than the sum of individual probabilities). For significant values of k (as used
in the proof with a = 20, co = 285, p = 100, giving k = cq - @ — (ca + p) = 285 x 20 — (285 + 100) = 5580),
this leads to a global error greater than 1, rendering the argument invalid.

In the current version, this mistake is addressed by consolidating the k steps into a single argument,
relying on the fact that Ry ~ Bin (nb, 5%) (see Theorem [3.1)).

Remarque 4.7 (Comparison between the asymptotic (Central Limit Theorem) and rigorous (Berry—Esseen)
approaches). In informal reasoning, it is common to apply the Central Limit Theorem (CLT) to approximate
a binomial distribution by a normal distribution as soon as the condition

nb-p 2 30
is met. In our context, this allows filtering up to N —n = f — 6 when nb = 27, leaving only
Rj_¢~2° =64

residual elements to analyze.

However, this approximation relies on asymptotic convergence without any explicit error bound. It is
therefore not directly usable in a formal proof system such as Coq or Lean.

In contrast, the Berry—Esseen inequality provides a fully explicit bound on the deviation from the normal
distribution. When applied with € = 1073, it restricts the filtering depth to

N —n=f—20,
leaving a much larger number of residual elements:
Ry_o0 ~ 220 ~ 106.
This loss of efficiency is the price to pay for obtaining a **rigorous and formally justifiable** upper bound

on the error probability, which is essential for formal verification.

Summary: the CLT provides sharper bounds but is not formally provable; Berry—Esseen is more conservative
but suitable for rigorous proofs.

5 The Approximate Reduced Syracuse Sequence: (v),)

n

We consider an approximate version of the reduced Syracuse sequence, where the term 3v,, + 1 is replaced
with 3v,. This approximation is intuitively justified when vg is sufficiently large and n remains moderate,
in which case the additive term +1 becomes negligible compared to the dominant multiplication by 3.

We construct a sequence (vj,) that reproduces the same transition types (even or odd) as the exact
sequence (Un)n>o. It is defined by:

14



’
vy = vg > 0,

!
Upy1 = %L if vy, is even (type O transition),
, 30 o o
Ung1 = =5~ if vy, is odd (type 1 transition).

Note that the elements of the approximate sequence (v;,) are generally not integers.

5.1 Decomposition of v, in Terms of v/, and a Rational Residue
Proposition 5.1. For all n > 0, there exists a rational number r, € Q such that
Un = v; —+ 7rn.

Proof. The proposition holds at n = 0 with ro = 0.
Assume it holds for some n > 0: v, = v}, + r,,. We prove it holds at n + 1:

e If v, is even:

So rny1 = %’"
e If v, is odd:
Un+t+1 = 3vn2+ L = 3(1]; +2Tn) +1 = % + w = U;L-H + %
So rp41 = %
By induction, the proposition holds for all n > 0. (|

Remarque 5.2. The sequence (r,) can be defined recursively based on the transition types of (vn):

To = 0
Tn . .

T4l = 5 if v, 1s even
3rn+1 . .

Tntl = 7712 if v, is odd

Note that the recurrence relation for (r,) depends only on the parity pattern of (v,) (i.e., the transition
list), and not on the actual values of (v},) or the initial value vo. It acts as a rational "residue” that encodes
the discrepancy and allows reconstruction of the exact sequence (v, ) from its approximation (v},).

In particular, r, > 0 for all n > 0.
Remarque 5.3. The sequence (r,) remains small compared to (v;,) when vg is large and n is moderate,
justifying the approximation v, = v,,. This observation will be quantified in the next section to control the
error term in applications of the approximate model.

5.2 Explicit Expression of v, in Terms of vy, and 7,

Proposition 5.4. Let L(N,m,d) = (to,...,tn—1) be a transition list of length N, and let m,, denote the
number of type 1 transitions among its first n entries. Then for all0 < n < N, we have:

3mn
2n
where (ry) is the sequence defined in Proposition .

Uy = Vo + Tn,

Proof. We recall that v;, evolves under multiplicative factors of 1/2 and 3/2, depending on the transitions.
After m, type 1 transitions and (n — m,) type O transitions, we have:

;o § mn 1 n—mn _ 3m77
Uy = 2 2 Vo = on V0.

Using v, = v), + Tn, the result follows. O

Remarque 5.5. This decomposition highlights a multiplicative factor 3”/21\] depending only on the global
structure of the transition list £(IV,m,d), and a residue rn depending solely on the positions of the type 1
transitions—mnot on the initial value vg.

This is a key step toward applying the Random List Theorem discussed in Section E[
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5.3 Closed-Form Expression for r, Based on Transitions

Théoréme 5.6. Let L(N,m,d) be a transition list of length N. For any 0 < n < N, let m,, denote the
number of type 1 transitions among the first n elements, and let ind(i) denote the index (starting from 0) of
the i™ type 1 transition in the list. Then:

o Ifmy, =0, then r, =0.

o Ifm, >0, then:

3mn Mn 2ind(i)

Tn = on 3i

i=1

Proof. We proceed by induction on n.
Base case: n =1
e For £ = (0), m; =0 and r = 0, so the formula holds (empty sum).
e For £L = (1), m; =1, ind(1) =0:
N
BT T
which matches the closed-form expression for .

Induction step: Assume the formula holds at rank n. We show it holds at n + 1:
e If t, =0, then my+1 = m,, and:

3mn Mn 2ind(7l)

p— 7'” —
Tnt1l = ? - 2n+1 31
i=1
e Ift, =1, then mp41 = m, + 1, and:
, _ 3rnt1
n+1l — 2 .

Substituting r,:

1 — My —1 ind(z) n
Tl = oy <3-Z3 2@ oo )

i=1
_ 2n1+1 (% gmni1—i gind(i) | g0 2n> ,
= S g gnd(s),
i=1
Thus, the formula holds at n + 1. O

5.4 Effect of the Order of Type 0 Transitions on the Growth of r,

Proposition 5.7. Among all transition lists L(N, m,d) with m type 1 and d type 0 transitions, the final
residue ry satisfies:

e rx is minimal when all type 1 transitions occur first (denoted LRmin),

o 7y is mazimal when all type 0 transitions occur first (denoted LRmax).

min73m 1 max __ 3 m
N = 9N T gar rN G = B} —1.

Proof. From Theorem we write:

In particular:

3m m 2ind(i)

NT N 3i
i=1
Shifting a type O transition earlier increases some indices ind(i) without decreasing any. Since x +— 2% is
strictly increasing, rn increases accordingly.
Minimum: all type 1 transitions first:

ind(z) =i—1, forl<i<m.

min 3" =27t 3m Ih\Th o1 3 1 (3)") 1
w2y wg(g) 32N(1_ 3

3m 1

¥ T3
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Maximum: all type 0 transitions first:
ind(z) =d+1i—1.

We factor out the 2¢ term:

N T 9N 3 oN L 3i

=1 =1

3m m 2d+i—1 2d3m m 27.'—1

This sum is the same geometric series as above, hence:
2¢.3™ 2\ 3\"
max — 1 _ = — 2 _ 1
w5 (-(6) ) -6

Remarque 5.8. The order of type 0 transitions can exponentially influence the residue rn. Between the
two extreme configurations:

O

~ 2¢

min
N

This justifies focusing on subsets of transition lists where the residue rn remains uniformly bounded. Such
control is essential when comparing the exact trajectory (v,) to its approximation (vy,).

5.5 Final Residue for a Concatenation of Transition Lists

In this section, we study how the final residue Ry = rn, evolves when the transition list Lo = £(No, mo, do)

is obtained by concatenating a collection of sublists L1,..., L.
For each k =1,...,n, we define:
e L = L(Ny,my,dy): a transition list of length Ny = my + d,
3mk e . .
o [} = : the multiplicative factor associated with L,

N
e R =rn,: the rational residue associated with Ly,

o fi = Hle F% the reciprocal product of the F; up to index k.

We recall from Proposition that the final value of a block of transitions satisfies:
VN, L) = Fr - v(0,2,) + Rk.

Proposition 5.9 (Concatenation formula for residues). Let Lo = L1 + L2 + --- + L, be the successive
concatenation of the lists L. Then the final residue Ry associated with Lo satisfies:
n n 3mo
R():F()'kakRk, where FOZkl_A[FkZQTO.
=1 =1

Proof. We prove the result by induction on the number n of concatenated blocks.
Base case: n =2 Let Lo = L1 + L2. From Proposition we have:

U(No,L2) = F2 - v(0,25) + B2, and v(o,2,) = v(vy 1) = F1 - v(0,21) + Ra-

Therefore:
VU(No,2o) = F2(Fivo + R1) + R
= Fovo + F2R1 + R,
so Ro=FyR1+ Ry = Fo(fiR1 + faR2).
The general case follows by iterating this recurrence. O

6 Study of the Transition List Ceil(V)

We focus here on a particular transition list, denoted Ceil(/N), defined by a strict control on the proportion
of type 1 transitions.

Définition 6.1. Let m, be the number of type 1 transitions among the first n transitions in a list L(N, m, d).
The list Ceil(V) is defined by the condition:

My = ln—2n forall0 <n < N.
In3
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6.1 Threshold of the Trajectory: v, > vy for Al 0 <n < N
Proposition 6.2. Let (v,) be the Syracuse sequence associated with the list Ceil(N). Then:

vn > v forall0 <n < N.

Proof. By definition of Ceil(N), we have for all n > 0:
_[m2 7. m2
"= s " 3 "

my,-In3 >n-In2 if and only if 3™ > 2",

This implies:

Using Proposition [5.4] we write:
3mn

2n

Un sV + Tn,

with 7, > 0. Therefore:
Un > Vo,

as required.

6.2 Bounding r, in the Ceil(/V) List
Théoréme 6.3. For the transition list Ceil(N), we have:

%<Tn<mn, for all 0 < n < N < 10°.

Proof. Direct numerical verification for N < 10°
The entries in the tables below are sorted to highlight:

e Table 1 (b, = rn — my): most negative additive gaps;
e Table 2 (a, = r,/my): smallest multiplicative coefficients;

e Table 3 (¢, = Tn/my): largest multiplicative coefficients.

Table 1: b, Table 2: an, Table 3: ¢,

bn n an n Cn n
-0.5 1 || 0.2404498 | 780239 || 0.7213476 | 301994
-0.75 2 || 0.2404499 | 478245 || 0.7213469 | 603988
-1.344 5 || 0.2404504 | 176251 || 0.7213466 | 905982
-1.375 3 || 0.2404506 | 956490 || 0.7213466 | 125743
-1.562 4 || 0.2404506 | 654496 || 0.7213444 | 427737
-1.762 8 || 0.2404508 | 352502 || 0.7213442 75235
-2.508 7 || 0.2404516 | 830747 || 0.7213440 | 729731
-2.672 6 || 0.2404517 | 528753 || 0.7213435 | 251486
-3.321 | 10 || 0.2404522 | 226759 || 0.7213428 24727
-3.611 | 13 || 0.2404524 | 705004 || 0.7213421 | 553480
-3.688 | 16 || 0.2404526 | 403010 || 0.7213416 | 855474

For N = 1000000:
71000000 = 198875.6767 ~ 217'6 =~ 0.315 - m1000000,

These results confirm that:

024 -my, <r, <0.72-m, so — <rp<Mmn.
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7 Answers to Questions and Conjectures Involving sft(n)

7.1 Problem Analysis

The answers in this section concern the following points from the document ”SE”:

e Title: “Is the Syracuse Falling Time Bounded by 12?”
e Conjecture 5.2: “We have sft(n) < 2 for all odd n > 2°°°°.”
e Question §3.2: “Again, we may ask whether sft12(n) = 1 holds for all odd n > 3.”

All these points refer to the function sft(n).

The complexity of the problem stems from the fact that the value sft(n) depends on the jump function
sjp(n), which itself is based on the extracted sequence syr(n), containing only the odd values from the orbit
of n under the application T. In general, it is therefore impossible to explicitly revert to 7' to compute
sip(n).

However, it is worth noting that sjp(n) is well-defined: if the sequence diverges starting from n, it contains
infinitely many odd values, and thus at least £ of them. If it converges to a cycle, the cycle must contain at
least one type-1 transition, and therefore also at least ¢ odd values.

We are interested here in the transition list L(N,m,d) (see , which describes the sequence of parity
bits or transition types associated with the orbit of n. The value sjp(n) corresponds to the ¢-th odd value
in this orbit, but the index of this value in the sequence {T® (n)}x>¢ is not constant.

In other words, the trajectory of n is a list L(N, m,d), where m = ¢, N = m + d, and 7w (n) = sjp(n).
Since d is not fixed, sjp(n) can be either much larger or much smaller than n.

e If d is large, then sjp(n) = T (n) is significantly smaller than n, and therefore may have fewer bits.

e If d is small, then sjp(n) is larger than n and may have more bits.

This variability makes the application of the Random List Theorem (see challenging, since it is based
on transition lists of fixed length N.

We therefore restrict our study to the integers n for which all values sjp™® (n), for 0 < = < 12, have the
same number of bits as n and satisfy sjp<z)(n) > n. This restriction allows us to enumerate a subset of
possible trajectories and to deduce a lower bound on the constant C' sought in Conjecture 3.7.

We simply hope that this restriction is not too severe to prevent proving that C' > 13.

The precise approach is divided into three main steps:

1. We determine the values of N (trajectory lengths), and nbi, the number of transition lists L(Ny,m1,d1)
(or the number of values of n < 2™1) such that n < TV (n) = vy, < 2n < 2N,

2. We then compute the number nb = 27(*N1) of transition lists L(N = xN1,m = xmi,d = zd1) (or the
number of values n < 2), such that for all 0 < 7 < z, we have TN (n) = v;n, > n, and each such
value has the same number of bits as n.

3. Finally, we apply the Random List Theorem (see |4.2)), which allows us to conclude that there exist
values of n such that sft(n) > z + 1. We use Rema to apply the theorem to this non-random set
of transition lists.

More precisely, if n is the minimal solution of a trajectory of length N = xN; such that for all0 < i < x,
we have TN (n) > n and each TN (n) has the same number of bits as n, then T™)(n) also has
the same number of bits as n.

If there exist solutions n in the interval [2¢71,2%) with £ = m,, then T™)(n) = sjp'® (n), since the
correct number of odd transitions is present in each sublist of length N;.

By definition, sft(n) is the smallest value k such that sjp®)(n) < n, which implies sft(n) > z + 1.

In other words, the existence of such solutions n in the interval [2°7!,2¢) with £ = m; and = = 12
guarantees the existence of counterexamples to Conjecture 3.7 and provides a lower bound on the
constant C.

The Random List Theorem thus provides a perfectly suited tool for addressing this type of question.

7.2 Step 1: Determination of N; and nb;

We determine the values of Ny, the trajectory lengths, and nb;, the number of transition lists L(N1,m1,d1)
(or the number of values of n < 21) such that n < TWV (n) = vy, < 2n < 201,
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Possible Values of NV;

In this section, we use the approximate reduced sequence v’, defined in Section [5| to model the iteration of
the function T. Let m denote the number of type-1 transitions (that is, odd values) in the first p steps of
the trajectory Or(n). The following formula holds:

@) = (3
T (n)_(Qp)n+RPa
where the residual term R, is defined recursively by

R,/2 if 7" (n) is even,

Ro=0, R =
’ e {(3Rp +1)/2 if T®(n) is odd.

The term R, does not explicitly depend on n. It depends only on the sequence of transitions, which
allows it to be computed independently of the starting point, for each parity list.
Since R, > 0 for all p, the following lower bound is immediate:

T® (n) > (i—j) n.

We are thus interested in finding pairs (m, d), where d = p —m, such that the ratio 23,% exceeds 1. This
condition guarantees that (™) (n) > n. At the same time, we seek ratios that remain close to 1, in order to
control the growth.

Consider the inequality

3m 1
om+d > L.
This inequality holds if and only if
mIn3 — (m+d)In2 > 0.

Since In3 — In2 > 0, dividing both sides by d(In3 — In 2) preserves the inequality, which gives
mln3 —mln2 —dIln2

d(In3 —In2) > 0.
Simplifying the numerator leads to
m S In2
d”~ In3—In2’
We set
B In2
T In3-1In2’
The condition is therefore equivalent to
m
" > X.

We now consider upper approximations of the constant X by rational fractions m/d such that 2;1% >
1, while keeping the quotient as close to 1 as possible. These approximations are computed using the
Stern-Brocot tree method. The following table presents the first such approximations, obtained from the
supplementary test file [2]:

m d| N=m+d 3m /2N

2 1 3 1.125

7 4 11 1.068

12 7 19 1.014

53 31 84 1.00209
359 210 569 1.0010664
665 389 1054 | 1.0000436
16266 | 9515 25781 1.0000255
31867 | 18641 50508 | 1.00000726

Table 2: Upper Approximations of X by m/d

These approximations provide candidate pairs (m1,d1), and trajectory lengths N1 = mi + d1, that are
relevant for our study.

Since numerical tests have already covered the domain ¢ < 40, particular attention will be given to the
following values for Ny: 84, 569, 1054, 25781, and 50508. Additional pairs can be generated using the same
method.
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Condition TV (n) < 2n < 2M

For the condition T (n) < 2V1 it suffices to restrict the analysis to the minimal solutions of the transition
lists of length Ny, in accordance with Lemma [3.4]

The condition T<N1)(n) < 2n is more delicate. In particular, it is not possible to allow large oscillations
of T (n) around n for 0 < i < Ni. Indeed, the residual term Ry, is maximal when the list begins with d;
type-0 transitions followed by m1 type-1 transitions (the list LRmaz), because leading type-0 transitions
amplify R, (see §[5.4).

In this case, we have the approximation:

mi

T(Nl)(n) ~ ?2)N1 (n + 2d1) 7

which imposes, in order to obtain TV (n) < 2n, the condition n < 291. This bound is too restrictive in
our context since d; < m;.
According to Section for the transition list Ceil(NN1), we have the bound

Ry, <mu,
and numerical computations provide the estimate
R1,000,000 < 2'8,
Therefore, in this context, the condition
TN (n) < 2n

holds for the minimal solution n associated with Ceil(Ny).
It is useful to observe for later comparisons that

1,000,000 > 20 x 25,781.

We will now restrict our attention to the set E(NN1), which consists of the transition lists L(N1,m1,d1)
that satisfy
Ce1l(N1) '\< L(Nl,m1, dl),

In2
my = ’VNl . m—‘ .

Here, the symbol < refers to the partial order defined in Section [2:3]

Since Ceil(Ny) is the minimal element of E(N;) with respect to this partial order, and since all the lists
in E(N1) contain the same number of type-1 transitions, it follows from Section that Ceil(/N1) maximizes
Ry, .-

Consequently, for every transition list in E(N1), the inequality

where the parameter m; is defined by

7™ (n) < 2n

is satisfied when n is the minimal solution associated with the corresponding list.

Enumeration of the Admissible Transition Lists nb;

The number of elements in the set E(NV1) is exactly nb;.
For the transition list Ceil(N1), the following property holds: for all integers p such that 0 < p < Ny, we
have
T® (n) > n,

as stated in Proposition [6.2]

Since Ceil(Ny) is the minimal element of E(N1) with respect to the partial order defined in Section
this property is also satisfied by all transition lists in E(N7).

Without any constraint, the total number of possible transition lists of length N; containing m; type-1
transitions (and therefore di = N1 — m1 type-0 transitions) would be (TNni)

However, to account for the minimality condition imposed on n = v, we retain only one transition list
among its N; circular permutations. This leads to:

1 (N
nby = < 1), with Ny € {84,569,1054,25781,...}.
N1 ma

Here are the first corresponding numerical values:
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my di | Ni=mi1+dy (n]\%) ~~ 9c¢N1 nby ~ 9(c—logy N1/N1)Ny
53 31 84 20.90855N 5083215,
359 210 569 90.94143N, 9092536V,
665 389 1054 90.94493 N, 50.93540N7
16266 | 9515 25781 20.94966N; 9094909V,
31867 | 18641 50508 20-94980N: $0.94950N;

7.3 Step 2: Determination of the Number nb = 2/(") of Transition Lists

Table 3: Values of nby

L(N = xNy,m = axmy,d = xdy)

We compute the number nb = 2f(@N1) of transition lists L(N = xNi,m = zmi1,d = xd1) (or the number
of values n < 2V), such that for all 0 < ¢ < z, we have T (n) = v;5, > n, and each such value has the

same number of bits as n.

According to Lemma for each trajectory of length N = zNi, the condition n < 2% is automatically

satisfied as soon as n is a minimal solution.

We consider the trajectories L(NN,m,d) obtained by concatenating z transition lists Ly, each of length
N;. These lists may differ from one another, but each belongs to the set E(N1), as defined in the previous

step.

By construction, for any such trajectory L, we have:

and, more strongly,

We must now verify that, for all 0 < i < x, the value TN (n) retains the same number of bits as n.
when L is the

TN (n) >n forall 0 <i <z,

TW(n) >n forall0<j <N =azNi,
which implies that the falling time o(n) satisfies o(n) > N.

To do so, we use the general formula from paragraph giving the residual term Ry
concatenation of x sublists L:
We have the following formula for the residual term:

where

the inequality

k=1

s
fk :Hﬁv
i=1

In our specific case, for all k, we have my = m; and Nx = N1, so that F; = F for every i. Moreover,

and F; =

Ry < Reei(ny) <1

holds for all k, and we observe that

We deduce the following bound for Ry:

This yields the inequality

Ry < Reeii(ny) Z F
k=1

Ry <

mi

= FYT.

1 F¢
1—F

Since Fj is approximately equal to 1, it is convenient to set

U1=1—F1.

With this notation, we can approximate

FY ~1—zu;.

Explicitly, this leads to the estimate:

where

Fy

RN§m1~$-F1,

3mt

= oM

~1, and mi = [Nl
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As a consequence, we obtain the following inequality for the xNi-th iterate of T
nST(”Nl)(n) =F n+Ry<F'-n+my-x-Fi.

This expression shows that if TN (n) remains in the same power of two as n, then the intermediate
terms TNV (n) do as well, since F¥ and Ry grow moderately with z.
The following table provides typical values for x = 20:

mq di | Ny =mq1+d; T my-x - Fy
53 31 84 | 1.04265 1,062 ~ 210
359 210 569 | 1.02155 7,188 ~ 21281
665 389 1054 | 1.000873 13,300 ~ 2137
16266 | 9515 25781 | 1.000509 | 325,328 ~ 21831
31867 | 18641 50508 | 1.000145 | 637,345 ~ 21928

Table 4: Values of F}* and upper bound for Ry when 2 = 20

In all cases, we observe that TN (n) < 1.05 - n for & = 20, and much less for the larger values of Ni.
Moreover, if we consider integers n chosen in the interval [2™171 2™1)  the residual term Ry is negligible
in comparison, which ensures the stability of the number of bits.

Under the reasonable assumption of a fairly uniform distribution of minimal values n in the intervals
[2¢,27T1)] we can estimate that in at least half of the cases, T(le)(n) retains the same number of bits as n.

The total number of transition lists is therefore nbf, and we retain approximately half of them, giving
nb = % -nbf, which leads to:

my di | Ni=mi+dy | nb=2/GEN)
53 31 ]4 | 20-83245-zN1—1
350 | 210 £60 | 2UITIEENT=T
665 | 389 1054 | 20085102, T
16266 | 9515 SE7R1 | 200A00TEN =T
31867 | 18641 50508 90.9495-zN; -1

Table 5: Values of nb = 2f(*N1) a5 a Function of z

7.4 Step 3: Application of the Random List Theorem to Lower Bound C'

Suppose there exists a solution n € [2é71, 22) satisfying the properties established in the previous steps, with
£ =mi and N = xN;. In this case, for all 0 < i < z, we have:

271 < TN () < 2,

and therefore, due to the exact number of odd transitions per sublist, each T (n) corresponds to sjp” (n).
Since TN (n) = sjp™® (n) > n, it follows that:

sft(n) > x + 1.

The Random List Theorem (paragraph [4.2)) provides a particularly effective tool for addressing this
type of question: it allows us to estimate the existence of such solutions n in the interval [0,2™"), with
mi1 = [N1-In2/In3] and N = zN.

Approximately half of the integers in this interval also satisfy n € [2™1 7! 2™1), which makes it possible
to focus on the relevant cases.

In the diagram above:

e The blue line represents the JGL boundary (a constraint to be respected);

e The green line is a valid trajectory, always staying above JGL;

e The black line is the classical boundary of the Catalan triangle (without the JGL constraint);

e Green point mark the endpoint of valid trajectories;

e Blue points represent trajectories admissible in the Catalan triangle but invalid under the JGL con-
straint;

e Black points lie outside both domains.
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Figure 3: Diagram of transition paths in Up(N,vg) relative to the JGL boundary.

Remarque 7.1 (Exhaustive Set of Lists). Let us consider the set of transition lists £(n, m,d) of length n
that lie above the JGL boundary. We distinguish three cases:

e For lists whose endpoint is represented by a point (such as point 1 in Figure strictly inside the region
bounded by the JGL list: all such lists can be extended by any additional transition and will therefore
terminate at either point 2 or point 3. Consequently, regardless of the proportion of even values v,, at
point 1, the probability that the extended list satisfies vog < 2" is exactly half that of the original list
at point 1.

e For lists whose endpoint corresponds to a point (such as point 4) that has the same number of type 1
transitions as the JGL list and where the next transition in the JGL list is of type 1: this is an
nontrivial case where, at point 5, the probability that vg < 2" is not exactly half that of point 4, but
rather multiplied by the proportion of odd values v, at point 1, which is approximately 1/2.
Unfortunately, it is precisely near such points 4 (which occur with relative frequency around 1/n
compared to points 1), close to the JGL boundary, that the number of lists is maximal, since the
binomial coefficient (TZ) decreases rapidly when m > n/2. In practice, however, discrepancies from
exact independence tend to cancel out across successive transitions.

e For lists whose endpoint corresponds to a point (such as point 6) that already has the same final
number of type 1 transitions as the JGL list: this is a nontrivial case where, at point 7, the probability
that vo < 2" is not exactly half that of point 6, but rather multiplied by the proportion of even values
vn at point 1, which is approximately 1/2. Fortunately, the number of such lists is minimal. As in
the previous case, practical discrepancies from exact independence tend to cancel out across successive
transitions.

While we acknowledge that the lists are not formally independent, we still apply the Random List
Theorem, as the observed discrepancies are so large that the resulting contradiction may be viewed as
effectively formal.

Asymptotic Case. In the limit as N1 — oo, we use the asymptotic approximation:

N ~ 90-949956N
N;-In2/In3 ’

We then seek to satisfy the inequality (applying the theorem with n = my and N = xN;):
e=mi1 —xN1 + f(zN1) > 33,

which corresponds to a minimum of 4,294,522,559 > 23! solutions.
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This condition becomes: 02
M,#Efoy+MM%%mwf1zlz
n

from which we deduce:
_ —13/Ni+In2/In3

- 1 —0.949956
This proves the existence of solutions for x = 12, but not beyond, in this restricted framework.

~ 12.6075.

Concrete Examples. We numerically evaluate the expression e = my — N1 + f(zN1) with z = 12:

e For m; =53, N1 = 84:
53 — 12 x 84 +0.83245 x 12 x84 — 1 = —-116.89 < —T.

Therefore, based on the rule Heuristic Approach to Establishing the Existence of Solutions (see Re-
mark , it is highly unlikely that any solution exists.
e For m; = 359, N1 = 569:
—151.64 < 7.

Therefore, this case also admits no solution.
e For m; = 665, N1 = 1054:
—153.06 < —T7.
Therefore, this case also admits no solution.
e For m; = 16266, N1 = 25781:

16266 — 12 x 25781 4 0.94909 x 12 x 25781 — 1 = 594.87 > 33.

Therefore, by applying the Random List Theorem together with the Berry—Esseen inequality (see [4.2]),
we can assert that, with probability greater than 1 — 107°, there are at least 4,294,522,559 > 2°!
solutions below 2"1. More precisely, we even have:

931 o gm1—12N1+f(12N1)=33 9592

Since we target the interval [27171 2™1)  there remain about 2°°" useful solutions. Since the distribu-
tion is binomial, we are formally guaranteed that at least one solution exists.

For an infinite number of values of Ni > 25781 (corresponding to upper approximations of X), the
number of solutions continues to grow.

Remarque 7.2. e The smallest solutions satisfying sft(n) > 13 lie in the interval [2'6265 216266)  Thjs
is counterintuitive but is explained by the asymptotic growth of (:Z 1)

e Even though there are about 2°°* solutions for ¢ = 16266, it is incorrect to believe that they are easier
to find. The total number of trajectories to test is at least:

12
25781 A 90-94966x25781x12 __ 203798
16266 '

Under these conditions, a direct test over all integers in 2'9%%% < n < 219266 would be preferable,

requiring only 2!%?%° evaluations. However, this remains infeasible today, since the probability of
success for a random test in this interval is approximately:
2591

—1 4 —471
WZQ 567 ~ 10 78.

This estimation explains why empirical verifications, limited to n < 268

detect such counterexamples.

, are necessarily insufficient to

7.5 Conclusion on the Conjectures Considered

e Conjecture 3.7, cited in the title of the article as: “There exists C > 10 such that sft(n) < C for
all n = 3 mod 4”: If an upper bound C exists for the function sft(n), then necessarily C' > 13. The
authors were therefore correct to include a question mark in the title of their article, since the values
C =11 or 12 are insulfficient.

e Conjecture 5.2, asserting that sft(n) < 2 for all odd integers n > 2°°%°  is contradicted. Indeed,
there exist integers n satisfying 25°°° < n < 216256 gych that sft(n) > 13. Moreover, the theoretical
reasoning shows the existence of infinitely many such counterexamples.
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e Question §3.2: For the integers m constructed in this analysis, the value sfty(n) coincides with
the z-th iterate of the application sjp in most cases. Consequently, there exist integers n such that
8jp12(n) > n, which implies sfti2(n) > 1. The question posed on page 13 of [3], “Again, we may ask
whether sft12(n) = 1 holds for all odd n > 37, therefore receives a negative answer.

These results rely on a purely theoretical approach, independent of any explicit search. The existence
of counterexamples is guaranteed, although they are inaccessible to direct computation within the bounds
explored so far (n < 2°%).

The approach presented is based on a restricted subset of trajectories. It is plausible that one could go
beyond C' = 13, but this would require a more general analysis of the relationships between sjp(n) and T'.

Finally, the probabilities associated with the effective occurrence of such counterexamples within the
classical test ranges are extremely small, which explains their absence from experimental checks.

8 Answers to Questions and Conjectures Involving ft(n)

The questions addressed in this section correspond to the following points in the document SE:

e Conjecture 5.1: “We have ft(n) < 4 for all n > 2°%°.”

e Page 8: “We do not know whether ft(n) > 17 is at all reachable.”

e Page 9: “Is it true that ft1s(n) =1 for alln > 32”7

e Challenge: “If you do find any n > 2°% satisfying ft(n) > 5, please e-mail it to the authors.”

All these points concern the function ft(n), defined from the jump application jp(n), which retains only
specific values from the orbit of n under the action of T'. The structure of jp prevents any explicit expression
of ft(n) directly in terms of the T-iteration.

As before, we focus on integers n whose successive iterates jp” (n) retain the same number of bits ¢,
with jp((n) > n for all i < z.

The method is analogous to that used for sft(n), replacing N1 with ¢ in the trajectory constructions. We
again apply the Random List Theorem (see , this time for trajectories of length N = x/, and evaluate
the existence of solutions n < 2° such that ft(n) > z + 1.

Although we consider only a restricted subset of possible trajectories, we still obtain significant lower
bounds for the value of ft(n).

Asymptotic Analysis. In the limit as £ — oo, the number of admissible trajectories grows like
0-949956¢ y§7e therefore seek to solve the inequality:
e=L0—xl+ f(zl) > 12,
which guarantees at least 2' = 1024 solutions. This leads to:
—-13/¢+1

= 1-0.949956
We can therefore assert that there exist integers n such that ft(n) > 20.

{— 2040949956 - 2 — 1 > 12, = ~ 19.98.

Explicit Evaluations. Here are some concrete cases:

1. For ¢ =569 and = = 4:

0 — 20+ 092536 x zf — 1 = 398.12 > 33 = at least 2% solutions.

2. For ¢ = 25781 and = = 18:

0 —xf+0.94909 X zf — 1 = 2154.81 > 33 = more than 22" solutions.

Conclusions Related to the Statements in [3]

e Conjecture 5.1 is contradicted starting from ¢ = 569 > 500, since we theoretically observe integers n
such that ft(n) > 5.

e The answer to the question on page 8 is positive: according to case 3), it is possible to reach (and
exceed) ft(n) > 17.

e The answer to the question on page 9 is negative: for many values of n, we have jp(ls) (n) > n, so
ftlg(n) > 1.
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e Regarding the challenge, the results obtained imply the theoretical existence of infinitely many coun-
terexamples. However, an exhaustive test over n € [QE_I,QZ) for £ = 569 remains infeasible. The
probability that a random test in this interval identifies a solution is approximately:

2390

g =2 A LEx 1077

This explains why the authors will probably never receive the email they invite readers to send.
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